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Abstract 

In this article, the simulation based mathematical modelling on bioheat transfer in living tissue is studied 

by using non-linear three-phase-lag bioheat transfer model (TPLBHT). The TPLBHT model includes 

phase lag time due to heat flux, temperature gradient and temperature displacement with energy balance 

equation. A hybrid numerical method is used for solution which is based on Finite-Difference method 

with central difference method and Runge-Kutta (4, 5) method to find the solution. The effect of 

dimensionless temperature with dimensionless time for different parameters like blood perfusion 

coefficient, metabolic heat source coefficient, phase-lag time parameters and parameters of TPL model 

are discussed. The full article is studied and presented in the dimensionless form. 
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1. Introduction 

The mathematical modelling of bioheat transfer which is given by Pennes bioheat transfer model 

[1] with infinite speed of thermal signal is based on Fourier law of heat conduction is given by 

𝒒(𝒙, 𝒕) = −𝑲𝜵𝑻(𝒙, 𝒕)                                                                                       (1) 

where  q(x,t) is heat flux; K is thermal conductivity; temperature of tissue is T. When the heat 

moves between blood and tissue, then it takes a finite gap therefore the lagging behavior exist. 

Cattaneo [2] and Vernotte [3] independently offered a relaxation time (τq) which is due to heat flux to 

control the inconsistency which takes place due to infinite speed gap of thermal signal which is 

titled as Single-Phase-Lag (SPL) constitutive relation and stated as: 

𝑞(𝑥, 𝑡 + 𝜏𝑞) = −𝐾∇𝑇(𝑥, 𝑡)                                                                (2) 

The combination of SPL relation with energy balance equation gives bioheat model of thermal 

wave. The SPL model was one more time studied by Tzou [4] and gives another phase lag time 

due to temperature gradient (τT) and known as Dual-Phase-Lag (DPL) constitutive relation is as 

follows: 

𝑞(𝑥, 𝑡 + 𝜏𝑞) = −𝐾∇𝑇(𝑥, 𝑡 + 𝜏𝑇)                                                                                       (3) 

When DPL relation combined with energy balance equation then it becomes DPLBHT model. 

Several researcher [5–12] explained the third phase lag τv and added in DPL constitutive 

relation which is due temperature displacement gradient known as TPL constitutive relation i.e. 
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𝑞(𝑥, 𝑡 + 𝜏𝑞) = −[𝐾∇𝑇(𝑥, 𝑡 + 𝜏𝑇) + 𝐾∗∇𝑣(𝑥, 𝑡 + 𝜏𝑣)]                                                     (4) 

where v(x,t) is thermal displacement and ∂v(x,t) =T(x,t), K∗ is the rate of thermal conductivity of 

living tissue. We used the expansion of Taylor’s series of TPL model (4) upto first order at 

time t in the problem which is as: 

(1 + 𝜏𝑞
𝜕

𝜕𝑡
) 𝑞(𝑥, 𝑡) = − [(K + K∗)∇𝑇(𝑥, 𝑡) + 𝐾𝜏𝑇

𝜕

𝜕𝑡
∇𝑇(𝑥, 𝑡) + 𝐾∗∇𝑣(𝑥, 𝑡)],              (5) 

Pal (1993) [13] presented the mathematical modelling of the results of metabolic heat production in a 

two dimensional model of human skin and subcutaneous tissues and flow of blood. For the 

solution of transient and non-linear 2D bioheat transfer, the dual reciprocity boundary element method 

was used in heat flux on the skin surface is studied by Deng (2000) [14].Coupled thermo elasticity was 

developed by using TPL model containing three phase lag time because of heat flux, 

temperature gradient and thermal displacement gradient by Choudhuri (2007) [15]. Quintanilla [16] 

discussed the stability in the TPL thermal conduction equation and also shows the effects of 

different parameters values. Zhang (2009)[17] modified the classical PBHT equation and 

developed the new DPL model in which the phase-lag times are indicated in the properties of 

blood and tissue. Ferreira (2009)[8] established the  revised model of thermal system of human. To 

solve real- life problem, the features combined which are 3D heat conductions, the applications 

of elliptical cylinders to adequately approximate body geometry, the representation of tissues and 

organs, and the flexibility of the computational applications. Afrin(2011)[18] presented the 

transfer of heat amidst tissue, blood of venous and arterial tissue by using DPLBHT model for 

living tissues. They found that when the tissue and blood flow have unique properties then the 

phase lag because of heat flux and temperature gradient are equivalent. Ahmadikia (2012)[19] 

compared the hyperbolic and parabolic bioheat transfer models with different boundary 

conditions and solved by Laplace transform method. A generalized DPL bioheat model is used 

to examine thermal damage to show the effect of laser irradiation is studied by Afrin (2012) 

[20]. Hosseininia (2012) [21] focused the mathematical modelling of hyperthermia therapy by 

considering the bioheat transfer model in the living tissue. They also introduced the 2D-transient, 

DPL model, variable-order fractional energy equation and used the 2D Legendre wavelets for 

the solution. The transfer of bioheat process of bioheat transfer with different conditions of blood 

perfusion rate under the coordinate system and boundary conditions by using radiation of 

electromagnetic and solved by FDM and Adomian de- composition method is described by Gupta 

(2013)[22]. Zhang (2014)[23] developed the procedure of fundamental solution coupling with the dual 

reciprocity method for solution of non-linear steady state bioheat transfer problem. The TPL model 

is considered for the problem of reflection and refraction because of longitudinal and transverse 

wave in between uniform elastic solid half-space and thermo elastic solid by Kumar (2013) [24]. 

Askarizadeh (2014) [25] solved the DPLBHT equation of heat transfer problems inside skin 

tissue under the pulse train and heat flux periodicity. The differential equations are solved by using 

Laplace transform and inverse Laplace Transform for results in time domain. The DPLBHT model 

has been studied by Kumar (2015)[26] by taking Gaussian distribution source underneath the 

boundary condition for the therapy of hyperthermia. The Finite element wavelet Galerkin method 

taking the Legendre wavelet as a basis function was used for the solution of the problem. 

Ghazanfarian (2015)[27] discretized the non-linear PBHT equation and DPL model by taking a 

mesh-free SPH procedure. They also investigated the temperature distribution in living tissues and 

∂t 
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observed the effect of non-linearity in the PDE. Kumar (2016) [28] theoretical study of the 

DPLBHT model during thermal therapy in tissues underneath the different non-Fourier boundary 

condition in various coordinate system. The freezing of biological living tissue is discussed by 

Mochnacki (2017) [29]. They used the DPL model for explaining the thermal interaction in 

between the soft tissues and tip of cryoprobe. Afrin (2017) [30] reviewed the thermal damage in 

biological tissue with laser irradiation and showed the effect of uncertainty of phase lag times, 

scattering coefficients, blood perfusion coefficient etc. For the treatment of infected cells, the 

simulation based modelling of bioheat transfer in living tissue by using DPLBHT model 

underneath Dirichlet boundary conditions is studied by Kumar et al.(2018) [31]. They used the 

FDM and RK (4, 5) schemes for the solution of non-linear problem. Dutta (2018) [32] studied 

about an analytical solution for 2D thermal field of single layer living biological tissues of Fourier 

and non-Fourier heat transfer. In conjunction, Laplace Transform Method with the Inversion 

Theorem is used for the analytical solution. Sharma (2020)[33] studied the simulation based 

mathematical modelling of non-linear DPLBHT model for examine the temperature in tissue 

during hyperthermia therapy. They used the hybrid method to solve the problem and also observed 

the thermal damage of normal tissue. Hobiny (2020) [34] proposed the analytical method solved 

with Laplace transforms and estimation of experimental data of thermal damages and temperature 

because of laser irradiation by utilizing measurement in formation of skin surface. Saeed (2020) [35] 

studied the effect of laser heat source in the spherical tissue which is based on DPLBHT model. 

They adopted the finite difference method for the solution of bioheat model in the spherical 

biological tissues. Shah et.al. [36] solved the DPLBHT model for the case of hyperthermia 

treatment. They used the algorithm of Haar wavelet operational matrix under the different types of 

boundary conditions. Sharma (2021)[37] described the simulation based on mathematical 

modelling of bioheat transfer in tissue underneath periodic boundary condition in DPLBHT. 

Kumar (2020)[5] introduced the TPLBHT model by considering the TPL time because of heat 

flux, temperature gradient and thermal displacement. They applied the Finite element Legendre 

Wavelet Galerkin method for the solution of TPLBHT model and compared with experimental 

data. Akbarzadeh (2014) [38] studied the heat conduction in hollow cylinder which is based on the 

TPL model. Hobiny et al [39] presented the TPL model of thermo-elastic interactions in the 2D 

porous medium due to pulse heat flux. In this research paper, the simulation based on mathematical 

modelling of bioheat transfer in tissue is dealt with by taking non-linear TPLBHT model. The 

TPLBHT model includes three phase lag times which are due to heat flux, temperature gradient 

and temperature displacement. We considered the metabolic heat source, blood perfusion heat 

source which are experimentally validated temperature dependent parameters. The whole problem 

is converted into dimensionless form. For the solution of the problem, a hybrid numerical method is 

used which is based on Finite- Difference method and Runge-Kutta (4, 5) method. The effect of 

dimensionless temperature for different parameters like blood perfusion coefficient, metabolic heat 

source coefficient, phase-lag time parameters and other parameters of TPL model are reviewed. 

 

Formulation of the problem 

In this research paper, we considered a one dimensional inner structure of living skin tissue 

of length L with initial temperature To. The outer surface of skin tissue (x=L) and inner 

boundary of skin tissue is insulated (x = 0) is shown in Fig.1. 

https://www.ijfmr.com/
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The one-dimensional energy balance equation is generally conducted by PBHT equation 

[1] is 

𝜌𝑐
𝜕𝑇(𝑥,𝑡)

𝜕𝑡
= −∇𝑞(𝑥, 𝑡) + 𝑞𝑚 + 𝑞𝑏,                                                                                    (6) 

Where ρ is the density of tissues; c is the specific heat of local tissues; t is time; q(x,t) is the heat 

flux; qb and qm are the blood perfusion heat source and metabolic heat source respectively. 

Metabolic heat source is the temperature depended which is the source of local tissue temperature 

given as [5,40]: 

𝑞𝑚 = 𝑞𝑚0 × [1 + (
𝑇−𝑇0

10
)],                                                                                                 (7) 

where qm0 is the reference heat source term. The blood perfusion source can be given as [23,31]: 

qb=wbρbcb(Tb−T),                                                                                                          (8) 

where ρb,cb,wb are the density of blood, specific heat of blood and blood perfusion rate coefficient  

respectively and Tb is temperature of blood. By using Eqn (5) and Eqn (6), terminating q(x,t) 

which gives: 

𝜏𝑞𝜌𝑐
𝜕3𝑇(𝑥, 𝑡)

𝜕𝑡3
+ 𝜌𝑐

𝜕2𝑇(𝑥, 𝑡)

𝜕𝑡2
− 𝜏𝑞

𝜕2𝑞𝑏

𝜕𝑡2
− 𝜏𝑞

𝜕2𝑞𝑚

𝜕𝑡2
−

𝜕𝑞𝑏

𝜕𝑡
−

𝜕𝑞𝑚

𝜕𝑡
 

= [𝐾∗ + (𝐾 + 𝐾∗𝜏𝑣)
𝜕

𝜕𝑡
+ 𝐾𝜏𝑇] ∇2𝑇(𝑥, 𝑡),                                                                        (9) 

Subject to initial conditions 

 

𝑇(𝑥, 0) = 𝑇0 ,    
𝜕𝑇(𝑥,𝑡)

𝜕𝑡
= 0   𝑎𝑛𝑑 

𝜕2𝑇(𝑥,𝑡)

𝜕𝑡2 = 0                                                      (10) 

Boundary condition 

T(0,t)=Tw                                                                                                                     (11) 

 

Inner boundary is insulated, therefore the heat flux at boundary is zero, i.e., 
𝜕𝑇(𝐿,𝑡)

𝜕𝑡
= 0                                                                                                              (12) 

 

Solution of Problem 

To re-write the equation into dimensionless form which reduced some of parameters in the equation and 

make qualitative studies easier, we define the dimensionless variables which are as follows: 

𝑦 =
𝑥

𝐿
, 𝐹𝑜 =

𝐾𝑡

𝜌𝑐𝐿2
, 𝐹𝑜𝑞 =

𝐾𝜏𝑞

𝜌𝑐𝐿2
, 𝐹𝑜𝑇 =

𝐾𝜏𝑇

𝜌𝑐𝐿2
, 𝐹𝑜𝑣 =

𝐾𝜏𝑣

𝜌𝑐𝐿2
,

Ѳ =
𝑇 − 𝑇0

𝑇0
, Ѳ𝑤 =

𝑇𝑤 − 𝑇0

𝑇0
, 𝑃𝑓

2 =
𝑤𝑏𝑜𝑐𝑏𝜌𝑏

𝐾
𝐿2, 𝑃𝑚 =

𝑞𝑚0𝐿2

𝐾𝑇0
, 𝐶𝑇 = √

𝐾∗𝜌𝑐

𝐾
𝐿, 𝛼

= 0.1 × 𝑇0                                                                                                                                     (13) 

By using dimensionless parameters from eqn(13)  in eqns (9) - (12), it become 

𝐹𝑜𝑞
𝜕3Ѳ(𝑦,𝐹𝑜)

𝜕𝐹𝑜
3 = −[1 − 𝐹𝑜𝑞(𝑃𝑚𝛼 − 𝑃𝑓

2)]
𝜕2Ѳ(𝑦,𝐹𝑜)

𝜕𝐹𝑜
2 + (𝑃𝑚𝛼 − 𝑃𝑓

2)
𝜕Ѳ(𝑦,𝐹𝑜)

𝜕𝐹𝑜
+ 𝐶𝑇

2 𝜕2Ѳ(𝑦,𝐹𝑜)

𝜕𝑦2 + (1 +

𝐶𝑇
2𝐹𝑜𝑣)

𝜕3Ѳ(𝑦,𝐹𝑜)

𝜕𝐹𝑜𝜕𝑦2
+ 𝐹𝑜𝑇

𝜕4Ѳ(𝑦,𝐹𝑜)

𝜕𝐹𝑜
2𝜕𝑦2

,                                                 (14) 

subjected to initial conditions 

Ѳ(𝑦, 0) = 0,
𝜕Ѳ(𝑦,0)

𝜕𝐹𝑜
= 0,

𝜕2Ѳ(𝑦,0)

𝜕𝐹𝑜
2 = 0                                                                      (15) 
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boundary condition 

Ѳ(0, 𝐹𝑜) = Ѳ𝑤                                                                                                          (16) 

and symmetric condition 
𝜕Ѳ(1,𝐹𝑜)

𝜕𝐹𝑜
= 0,                                                                                                               (17) 

 

Hybrid Numerical method 

The hybrid method is applied to determine the problem. This method is a combination of two 

different methods. First method in which Eqn (14) is discretized by finite difference scheme 

discussed by many researchers [31,41,43] is used. After discretization, our problem is turned into 

system of third order non-linear ordinary differential equations (ODEs) with initial conditions. 

Again we convert third order ODEs into first order non-linear ordinary differential equations [47]. 

For the solution of the problem, second method which is Runge-Kutta (4,5) scheme [45,46,48] is 

adopted. The whole procedure of hybrid method is explained in following subsections. 

 

Spatial discretization scheme 

The domain of space coordinate [0,1] is discretized into l+1 subintervals of equivalent length (h) by 

taking y i+1 =yi+h, h is the step length i.e, 0 =y0<y1<y2<y3<··· <yi<··· <yl< yl+1=1. By 

using central finite difference formula, the second order derivative is written as, 

𝜕2Ѳ(𝑦,𝐹𝑜)

𝜕𝑦2 =
Ѳ𝑖+1(𝐹𝑜)−2Ѳ𝑖(𝐹𝑜)+Ѳ𝑖−1(𝐹𝑜)

ℎ2 ,          1 ≤ 𝑖 ≤ 𝑙                                                   (18) 

By applying Eqn (18), then Eqns (14−17) are converted into 

 

𝐹𝑜𝑞
𝑑3Ѳ1

𝑑𝐹𝑜
3 = −[1 − 𝐹𝑜𝑞(𝑃𝑚𝛼 − 𝑃𝑓

2)]
𝑑2Ѳ1

𝑑𝐹𝑜
2 + (𝑃𝑚𝛼 − 𝑃𝑓

2)
𝑑Ѳ1

𝑑𝐹𝑜
+

𝐶𝑇
2

21ℎ2 (−29Ѳ1 + 38Ѳ2 − 9Ѳ3) +

(1+𝐶𝑇
2𝐹𝑜𝑣)

21ℎ2

𝑑

𝑑𝐹𝑜
(−29Ѳ1 + 38Ѳ2 − 9Ѳ3) +

𝐹𝑜𝑇

21ℎ2

𝑑2

𝑑𝐹𝑜
2 (−29Ѳ1 + 38Ѳ2 − 9Ѳ3),            (19) 

𝐹𝑜𝑞
𝑑3Ѳ𝑖

𝑑𝐹𝑜
3 = −[1 − 𝐹𝑜𝑞(𝑃𝑚𝛼 − 𝑃𝑓

2)]
𝑑2Ѳ𝑖

𝑑𝐹𝑜
2 + (𝑃𝑚𝛼 − 𝑃𝑓

2)
𝑑Ѳ𝑖

𝑑𝐹𝑜
+

𝐶𝑇
2

21ℎ2 (Ѳ𝑖+1(𝐹𝑜) − 2Ѳ𝑖(𝐹𝑜) + Ѳ𝑖−1(𝐹𝑜)) +

(1+𝐶𝑇
2𝐹𝑜𝑣)

21ℎ2

𝑑

𝑑𝐹𝑜
(Ѳ𝑖+1(𝐹𝑜) − 2Ѳ𝑖(𝐹𝑜) + Ѳ𝑖−1(𝐹𝑜)) +

𝐹𝑜𝑇

21ℎ2

𝑑2

𝑑𝐹𝑜
2 (Ѳ𝑖+1(𝐹𝑜) − 2Ѳ𝑖(𝐹𝑜) +

Ѳ𝑖−1(𝐹𝑜)),               1 ≤ 𝑖 ≤ 𝑙.                                                                                          (20) 

𝐹𝑜𝑞
𝑑3Ѳ𝑛

𝑑𝐹𝑜
3 = −[1 − 𝐹𝑜𝑞(𝑃𝑚𝛼 − 𝑃𝑓

2)]
𝑑2Ѳ𝑛

𝑑𝐹𝑜
2 + (𝑃𝑚𝛼 − 𝑃𝑓

2)
𝑑Ѳ𝑛

𝑑𝐹𝑜
+

𝐶𝑇
2

ℎ2
(Ѳ𝑤 − 2Ѳ𝑛 + Ѳ𝑛−1) +

(1+𝐶𝑇
2𝐹𝑜𝑣)

21ℎ2

𝑑

𝑑𝐹𝑜
(Ѳ𝑤 − 2Ѳ𝑛 + Ѳ𝑛−1) +

𝐹𝑜𝑇

21ℎ2

𝑑2

𝑑𝐹𝑜
2 (Ѳ𝑤 − 2Ѳ𝑛 + Ѳ𝑛−1),                               (21) 

Subjected to initial conditions 

Ѳ(𝑦, 0) = 0,
𝑑Ѳ(𝑦,0)

𝑑𝐹𝑜
= 0,

𝑑2Ѳ(𝑦,0)

𝑑𝐹𝑜
2 = 0,                                                                             (22) 

Runge-Kutta (4, 5) Scheme 

Suppose that 

𝑑

𝑑𝐹𝑜
(𝐹𝑜𝑞

𝑑2Ѳ

𝑑𝐹𝑜
2

) =
𝑑Ф

𝑑𝐹𝑜
,   

𝑑2Ѳ

𝑑𝐹𝑜
2

=
Ф

𝐹𝑜𝑞
 ,

𝑑

𝑑𝐹𝑜
 (

𝑑Ѳ

𝑑𝐹𝑜
) =

Ф

𝐹𝑜𝑞
,

𝑑Ѳ

𝑑𝐹𝑜
=

𝜑

𝐹𝑜𝑞
             1 ≤ 𝑖 ≤ 𝑛              (23) 

By using Eqn (23)  in Eqns (19-22) , then the equations becomes 
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𝑑Ф1

𝑑𝐹𝑜
= −[1 − 𝐹𝑜𝑞(𝑃𝑚𝛼 − 𝑃𝑓

2)]
Ф1

𝐹𝑜𝑞
+ (𝑃𝑚𝛼 − 𝑃𝑓

2)
𝜑1

𝐹𝑜𝑞
+

𝐶𝑇
2

21𝐹𝑜𝑞ℎ2 (−29Ѳ1 + 38Ѳ2 − 9Ѳ3) +

(1+𝐶𝑇
2𝐹𝑜𝑣)

21𝐹𝑜𝑞ℎ2
(−29𝜑1 + 38𝜑2 − 9𝜑3) +

𝐹𝑜𝑇

21𝐹𝑜𝑞ℎ2
(−29Ф1 + 38Ф2 − 9Ф3),                        (24) 

𝑑Ф𝑖

𝑑𝐹𝑜
= −[1 − 𝐹𝑜𝑞(𝑃𝑚𝛼 − 𝑃𝑓

2)]
Ф𝑖

𝐹𝑜𝑞
+ (𝑃𝑚𝛼 − 𝑃𝑓

2)
𝜑𝑖

𝐹𝑜𝑞
+

𝐶𝑇
2

21ℎ2 (Ѳ𝑖+1 − 2Ѳ𝑖 + Ѳ𝑖−1) +
(1+𝐶𝑇

2𝐹𝑜𝑣)

𝐹𝑜𝑞ℎ2 (𝜑𝑖+1 −

2𝜑𝑖 + 𝜑𝑖−1) +
𝐹𝑜𝑇

𝐹𝑜𝑞ℎ2 (Ф𝑖+1 − 2Ф𝑖 + Ф𝑖−1),                                        (25) 

𝑑Ф𝑛

𝑑𝐹𝑜
= −[1 − 𝐹𝑜𝑞(𝑃𝑚𝛼 − 𝑃𝑓

2)]
Ф𝑛

𝐹𝑜𝑞
+ (𝑃𝑚𝛼 − 𝑃𝑓

2)
𝜑𝑛

𝐹𝑜𝑞
+

𝐶𝑇
2

𝐹𝑜𝑞ℎ2 (Ѳ𝑤 − 2Ѳ𝑛 + Ѳ𝑛−1) +
(1+𝐶𝑇

2𝐹𝑜𝑣)

𝐹𝑜𝑞ℎ2 (−2𝜑𝑛 +

𝜑𝑛−1) +
𝐹𝑜𝑇

𝐹𝑜𝑞ℎ2 (−2Ф𝑛 + Ф𝑛−1)                                                         (26) 

Subjected to initial conditions 

Ѳ(𝑦, 0) = 0, 𝜑(𝑦, 0) = 0, Ф(𝑦, 0) = 0                                                                          (27) 

 

Results and Discussion 

In this paper, we consider the temperature distribution in biological skin tissue is derived from 

non-linear TPLBHT model under Dirichlet boundary condition. In non-linear TPLBHT model, 

the temperature dependent blood perfusion and also metabolic heat source, which are 

experimentally validated function of temperature is considered. For validation of TPLBHT model, 

the comparison of TPLBHT model with experimental data is studied by Kumar (2020)[5] with 

experimental statistics which are obtained by Afrin (2011) [18]. 

Fig 2 explain the effect of dimensionless phase lag time because of heat flux with respect to 

dimensionless temperature and dimensionless time. We noticed that as increasing the value of 

Foq there is decrease in temperature but after Fo=0.1, the temperature increases as increasing the values 

of Foq. The variation of temperature distribution for different values of dimensionless phase lag 

time because of temperature gradient is shown in Fig3. It is observed that as increasing the value 

of FoT with time, the temperature distribution decreases. In Fig4, we shows the effect of 

dimensionless phase lag time due to thermal displacement Fov. As decreasing the value of 

thermal displacement, the temperature distribution increases. The effect of dimensionless 

blood perfusion coefficient is explained in Fig5, which shows that the temperature distribution 

increases as increasing the values of Pf. The effect of dimensionless metabolic heat source coefficient 

Pm with respect to dimensionless temperature and dimensionless time is shown in Fig 6. In this figure 

the temperature is above when the value of Pm is 2.5973e−00 and approximately same for the 

values of Pm=2.5973e−01 and Pm= 2.5973e−05. In Fig7, the effect of  CT is shown. From this 

figure we observed that as increasing the value of CT, temperature distribution with respect to 

dimensionless time increases. 

In Fig 8, we observed the effect of α, which shows that the temperature 

increases as the increasing the value of α. From these observations, 

the TPLBHT model is very beneficial for therapeutically application. 

 

Conclusion 

The behavior of non-linear TPLBHT model in living skin tissue is studied. For solution of present 

problem, the combinational numerical scheme is applied which is based on two different methods. 

Problem is discretized by central difference technique and Runge-Kutta (4,5) method underneath 
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Dirichlet boundary condition for skin tissue. The hybrid numerical scheme is applied which is 

based on two different methods for solution of present problem. Problem is discretized by central 

difference technique and Runge-Kutta (4,5) method under Dirichlet boundary condition for living 

tissue is used. The obtained problem is changed into system of non-linear third order ordinary 

differential equation with initial condition which is then solved by using Runge-Kutta (4, 5) 

method. After using hybrid method, we get some conclusions which are specified as: 

Fig.2 indicate that as increasing the value of Foq the temperature decreases but after Fo=0.1, 

the temperature increases as increasing the values of Foq. In Fig.3, we observed the effect of 

dimensionless phase lag time due to heat flux FoT and dimensionless phase lag time due to thermal 

displacement Fov respectively, from which we concluded as increasing the value of FoT and Fov, 

the temperature distribution decreases. The effects of dimensionless blood perfusion 

coefficient Pf, CT and α are shown in Fig 5,7,8 which shows that the temperature distribution increases 

as increasing  the values of Pf, CT and α. The results of dimensionless metabolic heat source 

coefficient Pm with respect to dimensionless temperature and dimensionless time is obtained from Fig6. 

In this figure, the temperature is exceeding when the value of Pm is 2.5973e −00 and almost same for the 

values of Pm= 2.5973e−01 and Pm= 2.5973e−05. 

Nomenclature 

q heat flux, W/m2 

x space coordinate, m 

t time, s 

K Thermal conductivity of tissue, W/m◦C 

T temperature of tissue, ◦C 

τq phase lag due to heat flux, s 

τT phase lag due to temperature gradient, s 

τv phase lag due to thermal displacement, s 

ρ density of skin tissue, kg/m3 

c specific heat of tissue, J/kg◦C 

wb blood perfusion rate, s−1 

ρb density of blood, kg/m−3 

cb specific heat of blood, J/kg◦C 

Tb arterial blood temperture, ◦C 

qmo             reference metabolic heat generation, W/m3 

K ∗ rate of thermal conductivity, W/m◦C/s 

L Length of tissue, m 

Tw wall temperature of outer boundary, ◦C 

 

Dimensionless variables 

y dimensionless space coordinate 

Fo dimensionless time 

Foq phase lag due to heat flux 

FoT phase lag due to temperature gradient 

Fov phase lag due to thermal displacement local tissue temperature 

Θb arterial blood temperature 
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α associated metabolism constant 

Θw wall temperature at boundary 

Pf blood perfusion coefficient 

Pm metabolic heat source coefficient 
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Figure1: One dimensional schematic of skin. 

 

 
Figure 2: Effect of lagging time due to heat flux 𝑭𝒐𝒒 on dimensionless temperature in tissue with 

respect to dimensionless time. 
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Figure 3: Effect of lagging time due to temperature gradient 𝑭𝒐𝑻  on dimensionless temperature in 

tissue with respect to dimensionless time 

 

 
Figure 4: Effect of lagging time due to thermal displacement on dimensionless temperature in 

tissue with respect to dimensionless time 
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Figure 5: Effect of dimensionless blood perfusion coefficient 𝑷 𝒇 on dimensionless temperature in 

tissue with respect to dimensionless time 

 

 
Figure 6: Effect of dimensionless metabolic heat source coefficient 𝑷𝒎 on dimensionless 

temperature in tissue with respect to dimensionless time. 
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Figure 7: Effect of  𝑪𝑻 on dimensionless temperature in tissue with respect to dimensionless time 

 

 
Figure 8: Effect of metabolic constant 𝜶 on dimensionless temperature in tissue with respect to 

dimensionless time 
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