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Abstract 

Melanoma is one of the most dangerous types of skin cancer, and catching it early can make a big 

difference in a patient’s chances of recovery. Here, we explored how machine learning can help predict 

whether a skin lesion is benign or malignant using only patient information, without needing complex 

medical images. We used a large dataset from the International Skin Imaging Collaboration (ISIC), which 

included over 33,000 records with details like the patient's age, gender, where the lesion was located, and 

whether it was cancerous or not. The first step was to clean and prepare the data: we handled missing 

values, converted text-based features into numbers, and scaled everything so the machine learning model 

could understand it better. After splitting the data into training and testing sets, we used basic machine 

learning models like logistic regression and decision trees to make predictions. We then evaluated how 

well the models performed using tools like the confusion matrix and ROC curves, which helped us 

understand how accurately the model was identifying cancerous lesions. One unique thing about this study 

is that we relied only on patient data instead of analyzing images. This makes the approach more practical 

for places with limited resources or no access to advanced imaging tools. Of course, combining this 

method with image-based models in the future could make it even more powerful. Overall, this project 

shows how structured patient data, when cleaned and processed properly, can help build effective tools to 

support doctors in diagnosing melanoma. In the future, we hope to improve the model further using better 

algorithms, deeper analysis, and possibly integrating it into real-world clinical systems. 
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1. Introduction 

Skin cancer is one of the most common types of cancer around the world, and among its different forms, 

melanoma is the most serious. It starts in the pigment-producing cells of the skin, called melanocytes, and 

can spread very quickly if it’s not caught early. According to the World Health Organization (WHO), 

cases of melanoma have been increasing over the years mainly due to more exposure to harmful ultraviolet 

(UV) rays from the sun. That’s why detecting it early is so important to help save lives. Usually, skin 

cancer is diagnosed through physical examination, dermoscopic analysis, and biopsy. While these methods 

are effective, they depend a lot on a doctor’s experience and access to specialized tools. In many places, 

especially where healthcare is limited, these processes can be slow, expensive, or even misinterpreted. To 
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solve this, there’s growing interest in using artificial intelligence (AI) and machine learning (ML) to make 

the diagnostic process faster, easier, and more accurate. Machine learning models can learn from large 

amounts of data and find hidden patterns that help them predict whether a skin lesion is benign or 

cancerous. These models are especially helpful when trained with clinical data like age, gender, or lesion 

location. Among different ML methods, classification algorithms are commonly used to tell the difference 

between benign and malignant lesions. The goal is to eventually use such models as tools that support 

doctors in making better decisions. we have built a predictive model using structured, tabular data not 

images. We used the ISIC dataset, which contains more than 33,000 patient records. Each record includes 

information like the person’s age, sex, lesion site, diagnosis, lesion size, and whether it was cancerous. To 

get the data ready for machine learning, we first cleaned it by filling in missing values and converting text 

into numbers using encoding. Then we scaled the data to bring all the features to a similar range so that 

the algorithm could perform better. After that, we split the data into training and testing sets to check how 

well the model performs on unseen data. We used basic machine learning models like logistic regression 

and decision trees, and we evaluated how they performed using tools like the confusion matrix and ROC 

curve. The confusion matrix helped us understand how many predictions were correct or incorrect, while 

the ROC curve showed how well the model was able to separate malignant cases from benign ones. The 

AUC (Area Under the Curve) score gave us an overall performance measure. One important thing about 

this study is that we used only patient data not medical images which makes this approach more suitable 

for clinics or hospitals that don’t have access to high-end imaging tools. In the future, we could combine 

this with image-based deep learning models for even better accuracy. In short, this article shows how 

machine learning can be used to support early detection of melanoma by analyzing patient data. With 

improvements in the model and proper validation, tools like this could help doctors diagnose skin cancer 

faster and more accurately ultimately saving lives. 

 

2. Methodology 

This study followed a clear step-by-step approach to develop a machine learning model for predicting 

whether skin lesions are benign or malignant using clinical metadata. Here's how the methodology was 

carried out: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dataset collection  

Data preprocessing  

Data splitting 

Model training 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR250451681 Volume 7, Issue 4, July-August 2025 3 

 

 

 

 

 

 

 

 

 

2.1 Data Collection 

We started by using a publicly available dataset from the ISIC (International Skin Imaging Collaboration) 

archive. It is in a compressed file format (train.csv.zip) and included over 33,000 records with information 

such as the patient’s age, gender, lesion location, image dimensions, diagnosis, and a binary target column 

indicating whether the lesion was benign (0) or malignant (1). Once the data was extracted using Python, 

we took an initial look to understand the structure, spot any missing values, and plan the necessary cleaning 

steps. This early exploration helped identify the types of features and how they might affect model 

performance. 

2.2 Data Preprocessing 

To prepare the data for modeling, we first removed any columns that had too many missing values (more 

than 30%). For the remaining columns with smaller gaps, we used mean imputation to fill in the missing 

numerical values. Categorical data like sex, diagnosis and other was converted into numeric form using 

LabelEncoder. This was essential because machine learning models work with numbers, not text. After 

encoding, we applied StandardScaler to normalize all the numerical features. This made sure that all data 

columns were on the same scale, which is especially important for algorithms like logistic regression that 

assume standardized input. 

2.3 Dataset Splitting 

Our goal was to predict the malignancy of a lesion (malignant or benign), so the target column served as 

the label for prediction. The other columns were used as features (inputs) to train the model. We split the 

dataset into 80% training data and 20% testing data using train_test_split. This helped us build the model 

on one portion of the data and evaluate how well it performs on new, unseen records making sure the 

model wasn’t just memorizing the training examples. 

2.4 Model Training – Logistic Regression 

Here, we chose logistic regression as our main machine learning algorithm. It’s widely used for binary 

classification problems and is easy to interpret. The model was trained using Logistic regression from the 

sklearn. linear_model library with default settings, including L2 regularization and the "lbfgs" solver. It 

works by estimating the probability that a lesion is malignant, based on a weighted combination of input 

features passed through a sigmoid function. 

2.5 Evaluation and Performance Metrics 

To understand how well our model worked, we used several common evaluation techniques: Confusion 

Matrix: Helped us see how many cases were predicted correctly and where mistakes happened like false 

positives or false negatives. ROC Curve and AUC Score: These showed how well the model could 

distinguish between benign and malignant lesions across different thresholds. A higher AUC means better 

performance. Accuracy, Precision, Recall, F1-Score: These standard metrics gave us a detailed look at the 

Model evaluation  

Detection outcome  
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model’s ability to make reliable predictions. We used libraries like seaborn for visualization and matplotlib 

to plot ROC curves. All performance metrics were calculated using sklearn.metrics. 

2.6 Data Visualization 

Before building the model, we also did some exploratory data analysis (EDA) using charts and graphs. 

This helped us understand how features like age, sex, and lesion location were distributed across benign 

and malignant cases. We created: Frequency plots for categorical features, Scatter plots to look at patterns, 

Faceted plots to analyze data across subgroups like gender or body part. These visuals guided many of our 

decisions during preprocessing and helped us choose which features were important for prediction. 

 

3. Results and discussion 

This study aimed to develop a machine learning-based predictive model to classify skin lesions as benign 

or malignant using clinical metadata. After data preprocessing and model training, a series of evaluations 

were carried out to understand how the model performed and how the data behaved. 

 

 
Fig 01: Dataset showing the first five entries and attribute types (image_name, sex, age, diagnosis, 

etc.) 

 

The dataset used in this study, sourced from the ISIC archive, contains 33,126 entries and 12 features 

related to patient demographics, lesion characteristics, and image metadata. A snapshot of the first few 

rows of the dataset reveals useful insights into the nature of the data. Most samples, as seen in the preview, 

are benign lesions and belong to female patients. Lesions commonly occur in areas such as the head/neck 

and upper extremities, and patient ages are predominantly around 45 to 55 years. This demographic 

concentration suggests the dataset has a middle-aged population bias, which may influence the prediction 

model if not addressed during data balancing. Additionally, the width and height columns reveal two 

dominant image resolutions (6000×4000 and 1872×1053), indicating that images were collected from 

different devices or settings. Although the study does not use images directly, such metadata can subtly 

impact the classification outcome if used as features. 

 

 
Fig 02: Distributions for age_approx, tfrecord, width, and height 
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Further analysis of the feature distributions shows clear patterns across several key attributes. The 

age_approx column shows a skewed distribution with a concentration around 45 years of age, confirming 

that most cases in the dataset are middle-aged. The tfrecord column, which represents internal dataset 

folds or data origin identifiers, is heavily concentrated at 0 with minor values at 6 and 11. This suggests a 

significant portion of data may have come from the same source or batch, which could introduce bias if 

not accounted for during model validation. Image width and height distributions also show similar bimodal 

patterns, reflecting two standard sizes across the dataset. These findings collectively highlight the 

importance of proper preprocessing, including normalization, encoding, and careful train-test splitting to 

avoid overfitting or biased learning. This exploratory analysis provided valuable direction for model 

training. By understanding the data’s composition, preprocessing steps such as label encoding for 

categorical variables, mean imputation for missing values, and standardization for continuous features 

were applied efficiently. These patterns also emphasize that even without dermoscopic images, structured 

clinical data holds significant potential in differentiating benign and malignant lesions when properly 

handled. The insights gained from this stage played a crucial role in building a predictive model that 

performs reliably on real-world. 

 

 
Fig 03: 2D scatter plots showing interactions between key numerical variables 

 

A set of 2D scatter plots were generated to analyze bivariate distributions between key numerical variables 

such as age_approx, tfrecord, width, height, and patient_code. These 2D plots help to visually inspect the 

spread and relationships between features that might not be obvious in univariate distributions alone. The 

plot between age_approx and tfrecord shows that specific age groups are more concentrated within certain 

tfrecord folds  particularly patients aged 45 and 50 falling predominantly under tfrecord values 0 and 6. 

Similarly, the plot of tfrecord against width indicates that high-resolution images (6000 pixels wide) 

mostly correspond to tfrecord 0 and 11, while smaller images (1872 pixels) are linked with tfrecord 6. 

This may suggest that the data within certain folds come from different imaging setups or timeframes. The 

width vs. height distribution confirms the existence of only two distinct image sizes, and the height vs. 

patient_code plot shows how image dimensions are linked with specific encoded patient IDs. These trends 

reinforce that multiple clusters exist in the dataset, likely due to how data was acquired or labeled in 

batches. Recognizing these patterns is crucial when performing model training and testing, as batch bias 

can severely skew results if not properly addressed during splitting or validation. 
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Fig 04: Bar plots displaying distributions of categorical features 

 

In parallel, categorical distribution plots were created to inspect the frequency of values across non-

numeric attributes. These include image_name, patient_id, sex, and anatom_site_general_challenge. The 

distributions show a near-uniform representation of image names and patient IDs, indicating no 

duplication or redundancy in entries. However, when observing the gender distribution, it becomes clear 

that female patients dominate the dataset, with at least four times as many entries as males. This imbalance 

could bias the model’s learning process toward patterns common in female cases. Similarly, in the 

anatomical site analysis, lesions are most frequently located in the upper extremities, followed closely by 

head/neck, while lower extremities are underrepresented. This skew must be taken into account while 

interpreting model performance across different lesion sites. These categorical distributions not only guide 

feature encoding but also highlight the need for class balancing or weighting in the model to prevent 

performance degradation on underrepresented subgroups. 

 

 

 
Fig 05: Time series-style plots showing variation 

 

In addition to static categorical and numerical distributions, a set of time series style line plots was 

generated to observe how key features varied with respect to the target label, particularly focusing on the 

age distribution across different categorical attributes. These plots illustrate the variation of age_approx 

across samples grouped by image_name, patient_id, sex, and anatom_site_general_challenge, plotted 

against the binary target class. The visualizations reveal that all samples in this segment of the dataset 

correspond to the benign class (target = 0), indicating the absence of malignant cases in the selected 

sample. Despite this limitation, it can still be observed that age remains fairly consistent across patient IDs 

and image names, mostly clustering around 45 to 55 years. Additionally, no major age differences are 
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noted between male and female patients, though the plot confirms a higher representation of female cases. 

Regarding lesion location, the upper extremity and head/neck regions are the most common, with no 

noticeable variation in age across anatomical sites. Although the target remains constant in these plots, the 

alignment of other features confirms earlier observations about age homogeneity and categorical skew in 

the dataset. These time series views are especially useful in datasets with mixed temporal entries or 

progressive disease staging; however, in this case, their utility lies more in visual confirmation of 

consistency and class imbalance. 

 

 
Fig. 06: Line plots showing trends of numerical values (age_approx, tfrecord, width, height) across 

sequential dataset entries. To further explore individual numeric attributes, a set of line plots was 

generated showing the raw values of selected features across a small sample of records. These plots 

visualize how attributes such as age_approx, tfrecord, width, and height change across the index positions 

in the dataset, allowing a temporal or sequential snapshot of the values as they appear in the original file. 

In the first plot, age_approx shows modest variation, ranging between 45 and 55 years across the entries. 

The consistency in age confirms earlier insights that the dataset predominantly consists of middle-aged 

patients. The second plot for tfrecord reveals a distinct wave pattern, with values moving from 0 to 6 and 

then returning to 0 before reaching 11. This indicates that the tfrecord values are not randomly distributed 

across the dataset but follow a structured chunking, which could be due to batch-wise uploading or patient 

group separation. The next two plots, representing width and height, exhibit a sharp valley pattern. The 

image resolution alternates cleanly between high-resolution entries (6000×4000 pixels) and standard-

resolution ones (1872×1053 pixels), creating a visible shift every two records. This repetitive switch 

suggests that the dataset alternates between different sources or imaging setups consistently, possibly 

reflecting differences in equipment or submission batches.These value-based visualizations reinforce the 

structured and repeating nature of the dataset, both in terms of demographic features and metadata. While 

these fluctuations alone do not influence model accuracy, recognizing structured data blocks helps identify 

potential pitfalls like batch effects and model overfitting if not randomized properly during training and 

testing. 

 

 
Fig. 07: Heatmaps showing 2D categorical distributions between image_name, patient_id, sex, 

diagnosis, and anatom_site_general_challenge. 
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To get deeper into feature relationships among 

categorical variables, a 2D categorical heatmap was plotted, highlighting how key attributes interact in 

terms of frequency and distribution across the dataset. This visualization helps in identifying hidden 

patterns between features such as image_name, patient_id, sex, anatom_site_general_challenge, and 

diagnosis. The first heatmap (leftmost) shows the relationship between image_name and patient_id, where 

each patient is linked to a unique image. The matrix displays a distinct diagonal pattern, confirming that 

there are no duplicate image entries or repeated patient identifiers in this sample. This validates the 

integrity of the dataset and eliminates concerns about data redundancy or overrepresentation of individual 

cases. The second matrix captures the correlation between patient_id and sex. It shows that out of the six 

patient samples, the majority are female, which is consistent with earlier observations about gender 

imbalance in the dataset. This again emphasizes the need for caution when generalizing the model to a 

broader population, particularly male patients who are underrepresented. Moving further, the heatmap 

between sex and anatom_site_general_challenge illustrates that female patients have lesions most 

frequently on the upper extremities, while male lesions are more distributed, though the sample is limited. 

This observation might be useful when tailoring models to specific demographic or anatomical trends, 

particularly in clinical deployment. The fourth panel reveals the relationship between 

anatom_site_general_challenge and diagnosis. Here, unknown diagnoses are more common across all 

anatomical sites, while confirmed nevus cases appear only in the lower extremities. This imbalance in 

label clarity suggests a high level of uncertain cases in the dataset, which might affect model training if 

the classifier is not robust to such ambiguity. Lastly, the fifth panel maps diagnosis against anatomical 

site, further confirming that many lesions labeled as "unknown" are scattered across all regions. The 

limited distribution of the nevus class only to specific sites indicates potential label concentration that 

must be considered during model evaluation, particularly if anatomical site is used as a feature. 

 

 
Fig. 08: Faceted plots and violin distributions 

 

To provide a multi-layered understanding of how different categorical variables influence numerical data, 

a set of faceted distribution plots was generated. These visualizations break down the variable age_approx 

across different groupings, such as image_name, patient_id, sex, and anatom_site_general_challenge, 

allowing for comparative analysis within subgroups. The first two plots display individual data points for 

age_approx distributed across image_name and patient_id, respectively. These charts reaffirm the one-to-

one mapping seen earlier each image and patient corresponds to a single age value, confirming the 

uniqueness and proper alignment of entries. There are no repeated ages for a given patient or image, 

suggesting consistency in demographic labeling and avoiding potential data leakage or duplication during 

training. The third plot, which uses violin plots to show the distribution of age_approx across sex, reveals 
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a slightly broader age range for female patients compared to male patients, although the majority cluster 

around the 45–55 age range in both cases. This supports earlier findings that the dataset is skewed towards 

middle-aged individuals, particularly females, which should be accounted for when building generalized 

prediction models. The fourth plot displays the age distribution by anatomical site, such as upper 

extremity, head/neck, and lower extremity. The shape and spread of the violins here suggest that lesions 

in the upper extremities and head/neck regions tend to occur across a broader age group, while lower 

extremity lesions appear to be less frequent and more narrowly distributed in age. This pattern might 

indicate clinical trends, or it may reflect biases in data collection or submission frequency from certain 

anatomical sites. These faceted plots provide a high-level overview of data stratification across categorical 

dimensions and are valuable in identifying uneven distributions, underrepresented subgroups, or areas of 

potential overfitting. They also validate earlier statistical insights with visual support, highlighting the 

importance of demographic-aware modeling in healthcare AI applications. 

 

 
Fig. 09: Confusion matrix showing classification results – 6,507 true negatives and 119 true 

positives, with no false positives or false negatives. 

 

To assess the performance of the machine learning model in classifying melanoma cases, a confusion 

matrix was generated after testing on the validation set. The confusion matrix offers a detailed view of the 

classifier's predictive accuracy by categorizing outcomes into four metrics: true positives (TP), true 

negatives (TN), false positives (FP), and false negatives (FN). In this case, the matrix reveals a remarkably 

high classification accuracy. The model correctly classified 6,507 benign cases (TN) and 119 malignant 

cases (TP), with zero false positives and zero false negatives. This means that every malignant lesion was 

identified as malignant, and no benign lesion was misclassified as malignant or vice versa. Achieving 

perfect separation between classes is rare in real-world medical datasets, and while it reflects strong model 

learning, it may also indicate overfitting, especially if the test set is small or not fully representative of 

unseen data. Such a confusion matrix suggests that the model has high precision and recall, as all positive 

cases (malignant) were correctly detected without misclassifying any benign ones. While this result is 

promising, it’s important to validate the model on a larger and more balanced dataset before deployment 

in clinical settings. Also, given the potential class imbalance (benign vastly outnumbering malignant 

cases), these metrics should be interpreted alongside others like F1-score and ROC-AUC to confirm 

generalizability. 
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Fig. 10: ROC Curve with AUC = 1.00 

 

To further evaluate the model’s discriminative power in distinguishing between benign and malignant skin 

lesions, the Receiver Operating Characteristic (ROC) curve was plotted, and the Area Under the Curve 

(AUC) was calculated. The ROC curve graphically represents the trade-off between true positive rate 

(sensitivity) and false positive rate (1 - specificity) at various threshold levels. In this study, the ROC curve 

demonstrates ideal model performance, with the curve sharply rising to the top-left corner of the graph. 

This corresponds to a perfect AUC score of 1.00, indicating that the model distinguishes flawlessly 

between the two classes. AUC values closer to 1 suggest strong classification ability, while values near 

0.5 indicate random guessing. Achieving an AUC of 1.00 is impressive, but similar to the confusion matrix 

outcome, it raises concerns about potential overfitting especially if the dataset used was limited or 

imbalanced. Despite these concerns, the ROC curve confirms that the model is highly sensitive and 

specific in its current form. It correctly identifies malignant cases without mistakenly flagging benign 

ones. However, to ensure this result is robust, further testing on independent datasets or through k-fold 

cross-validation would be necessary. Additionally, incorporating clinical feedback and using external 

validation cohorts could help determine the real-world applicability of the model. 

 

4. Conclusion 

The study successfully demonstrates the potential of machine learning in assisting with the early detection 

of melanoma, one of the most aggressive forms of skin cancer. By relying solely on structured clinical 

metadata such as patient age, sex, anatomical lesion site, and image characteristics rather than dermoscopic 

images, we were able to develop a predictive model that offers significant diagnostic accuracy while 

remaining accessible for low-resource clinical settings. A well-defined preprocessing pipeline ensured the 

reliability and consistency of the data by addressing missing values, encoding categorical variables, and 

applying standardization. The use of logistic regression for binary classification provided an interpretable 

and effective modeling approach. The model achieved outstanding performance, as evident from the 

confusion matrix and ROC curve, with perfect precision, recall, and an AUC. These metrics suggest that 

the model could correctly classify both benign and malignant cases without error on the test data. 

Furthermore, the series of visualizations including univariate and bivariate distributions, categorical 

heatmaps, faceted plots, and time-series style analyses offered deeper insights into the structure, balance, 

and patterns within the dataset. These analyses confirmed consistent demographic trends, such as a 

predominance of female patients and lesions most commonly located on the upper extremities. They also 

revealed potential biases and highlighted the need for balanced and stratified sampling during model 

training and evaluation. Despite these highly promising outcomes, caution is warranted before deploying 
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such a model in real-world diagnostic settings. The dataset, while large, still shows signs of class 

imbalance and limited diversity in terms of anatomical coverage and demographic representation. 

Moreover, the perfect performance metrics suggest that further testing is essential through cross-

validation, external validation datasets, and inclusion of more varied patient populations. Looking 

forward, future work could expand the model’s scope by integrating image-based data using deep learning, 

employing ensemble classifiers like (Random Forests) and incorporating explainable AI techniques to 

improve clinical trust. This study lays a strong foundation for building AI-assisted diagnostic tools that 

are effective, especially in under-resourced healthcare environments. 
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