

E-ISSN: 2582-2160 • Website: <a href="www.ijfmr.com">www.ijfmr.com</a> • Email: editor@ijfmr.com

# Decadal Trends in Mineral Resource Production, Economic Value, and Environmental Impact in Tonk District (2011–2020)

Prof. R. N. Sharma<sup>1</sup>, Pushkar Singh Bagaria<sup>2</sup>

<sup>1</sup>Professor and Former Head, Department of Geography, University of Rajasthan <sup>2</sup>Research Scholar, Department of Geography, University of Rajasthan

#### **Abstract**

This study investigates the decadal trends in mineral resource production, economic contribution, and environmental impact in Tonk District, Rajasthan, from 2011 to 2020. Tonk is known for its rich deposits of minor minerals such as sandstone, quartz, feldspar, garnet, and aquamarine. Using data from the Department of Mines and Geology, satellite imagery, and environmental assessments, the research reveals a steady increase in mineral extraction, particularly from riverbeds like the Banas, contributing significantly to district revenue—reaching ₹38 crore from Banas river mining alone in 2021. However, this economic growth has coincided with environmental degradation, including groundwater depletion, land erosion, and biodiversity loss. Groundwater levels in some blocks declined by up to 2.29 meters annually5, and water quality deteriorated due to elevated levels of fluoride and nitrate. The study highlights regulatory gaps, especially in controlling illegal mining, and proposes a framework for sustainable mineral governance that balances economic development with ecological preservation.

**Keywords:** Mineral extraction, Environmental degradation, Sustainable mining, Rajasthan, Groundwater depletion, Economic analysis

### Introduction

Mineral resources serve as the backbone of regional development in geologically diverse regions, with Tonk District in Rajasthan exemplifying this relationship. Covering 7,194 sq. km, Tonk houses substantial deposits of minor minerals—sandstone, quartz, feldspar, garnet, aquamarine, and building stone—that support construction, manufacturing, and local livelihoods. The decade from 2011 to 2020 witnessed unprecedented mineral extraction driven by infrastructure expansion and market demand, contributing significantly to Rajasthan's mineral revenue.

The district's mineral wealth generated substantial economic returns, with the Banas river alone contributing ₹38 crore in 2021. However, this economic boom masked severe environmental consequences. Mining activities, particularly illegal and unregulated operations, triggered land degradation, groundwater depletion, and ecological disruption. Groundwater monitoring reveals declining trends with annual drops exceeding 2 meters in critical areas, while water quality assessments show elevated fluoride, nitrate, and total dissolved solids levels, rendering significant portions of groundwater unsuitable for consumption.



E-ISSN: 2582-2160 • Website: www.ijfmr.com • Ema

• Email: editor@ijfmr.com

These impacts are amplified by weak regulatory enforcement and limited institutional capacity, creating an urgent need for sustainable mineral resource management that balances economic benefits with environmental stewardship.

India Rajasthan 10.00 10.61 Study Area **District Tonk** Pipalu • Malpura Todaraisingh 15.54

Map 1: Location Map of Study Area

Source: District Census Handbook, Tonk, 2011



E-ISSN: 2582-2160 • Website: <a href="www.ijfmr.com">www.ijfmr.com</a> • Email: editor@ijfmr.com

### **Objective**

- To analyze comprehensive production volumes, area coverage, and employment generation across key minor minerals in Tonk District from 2011 to 2020.
- To evaluate the complete economic contribution including production values, sale values, and revenue generation from mineral extraction.
- To assess employment patterns and labor market impacts of the mining sector.
- To document environmental degradation trends and correlate them with mining intensity.
- To propose evidence-based policy recommendations for sustainable mineral resource management.

### **Data Collection and Methodology**

This study employs a comprehensive mixed-methods approach integrating quantitative data analysis, spatial mapping, and qualitative policy evaluation to assess mineral resource extraction trends and impacts in Tonk District over the 2011-2020 decade.

**Production and Economic Analysis:** Primary data were obtained from the Department of Mines and Geology (DMG), Rajasthan, encompassing detailed records of:

- Annual lease allocations by mineral type
- Area coverage in hectares for each mineral category
- Production volumes in tons across all major minerals
- Complete financial records including sale values and government revenues
- Employment statistics across different mining operations

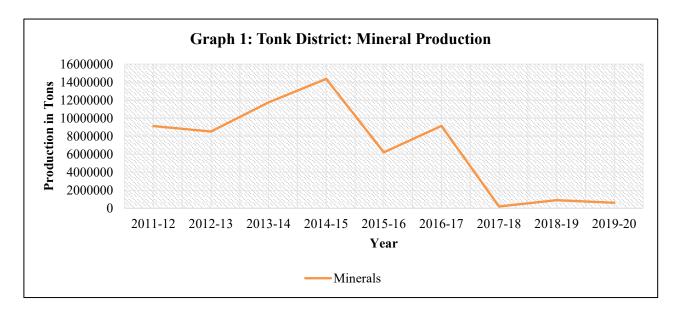
**Environmental Impact Assessment:** The study utilized satellite imagery from Bhuvan (ISRO) and Google Earth Engine to analyze spatial expansion of mining zones, particularly along riverbeds and ecologically sensitive areas. Groundwater data from the Central Ground Water Board (CGWB) and Rajasthan State Pollution Control Board (RSPCB) were examined to evaluate water level changes and quality deterioration, focusing on fluoride, nitrate, and total dissolved solids parameters.

**Regulatory Evaluation:** Qualitative analysis of policy documents including the Mines and Minerals (Development and Regulation) Act, 1957, and Rajasthan Minor Mineral Concession Rules, supplemented by interviews with local officials, mining contractors, and community members to identify enforcement challenges and governance gaps.

### **Production Trends Analysis**

The decade reveals dramatic shifts in mineral extraction patterns across Tonk District. Masonry Stone maintained consistent lease allocation with 59-67 leases annually, covering 51.22-89.08 hectares, while Quartz showed remarkable growth from 45 to 63 leases, representing a 40% increase. Most significantly, Granite mining commenced in 2019-20 with 27 new leases covering 42.5 hectares.

Table 1: Tonk District: Mineral Production in tons


| Minerals            | 2011- | 2012- | 2013-  | 2014- | 2015- | 2016- | 2017- | 2018-19 | 2019- |
|---------------------|-------|-------|--------|-------|-------|-------|-------|---------|-------|
| Millerais           | 12    | 13    | 14     | 15    | 16    | 17    | 18    | 2010-19 | 20    |
| Masonary Stone      | 24501 | 71692 | 199006 | 66285 | 10370 | 20284 | 54288 | 305440. | 10867 |
|                     | 1     | 9     |        |       | 3     |       |       | 37      | 6     |
| Phylite-shist/Patti | 14475 | 8950  | 15525  | 525   | 5760  | 0     | 248   | 321.81  | 4862  |



E-ISSN: 2582-2160 • Website: <a href="www.ijfmr.com">www.ijfmr.com</a> • Email: editor@ijfmr.com

| Katla        |             |             |              |              |             |             |            |               |            |
|--------------|-------------|-------------|--------------|--------------|-------------|-------------|------------|---------------|------------|
| Brick Earth  | 12505<br>2  | 11010<br>5  | 50880        | 82200        | 29600       | 90825       | 36540      | 49560         | 36540      |
| Granite      | 0           | 0           | 0            | 0            | 0           | 0           | 0          | 68733.4<br>5  | 97210      |
| Slate Stone  | 537         | 1200        | 833          | 0            | 0           | 0           | 0          | 0             | 0          |
| Quartz       | 11292<br>5  | 99330       | 154652       | 151175       | 74224       | 25432<br>1  | 10383<br>8 | 411620.<br>67 | 27480<br>5 |
| Felspar      | 3000        | 2875        | 15200        | 21575        | 31809       | 8154        | 0          | 49435.2<br>8  | 77812      |
| Silica Sand  | 2100        | 0           | 0            | 0            | 0           | 0           | 0          | 67.91         | 0          |
| Kankar-Bajri | 86223<br>36 | 75721<br>92 | 113201<br>79 | 140413<br>30 | 59605<br>26 | 87710<br>55 | 0          | 0             | 0          |
| Total        | 91254<br>36 | 85115<br>81 | 117562<br>75 | 143630<br>90 | 62056<br>22 | 91446<br>39 | 19491<br>4 | 885179        | 59990<br>5 |

Source: Department of Mines & Geology, Udaipur



Production volumes exhibited extreme volatility, with total mineral output ranging from a low of 194,914 tons in 2017-18 to an unprecedented peak of 14.36 million tons in 2014-15. This dramatic fluctuation reflects market demand cycles and regulatory enforcement periods. Kankar-Bajri emerged as the dominant mineral by volume, contributing up to 14.04 million tons in peak years, while traditional minerals like Masonry Stone showed declining production from 716,929 tons in 2012-13 to 108,676 tons in 2019-20.

### **Economic Impact Assessment**

The economic contribution of mineral extraction shows remarkable variation, with total sale values fluctuating from ₹70.46 crores in 2017-18 to ₹1,455 crores in 2014-15. Kankar-Bajri dominated



E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

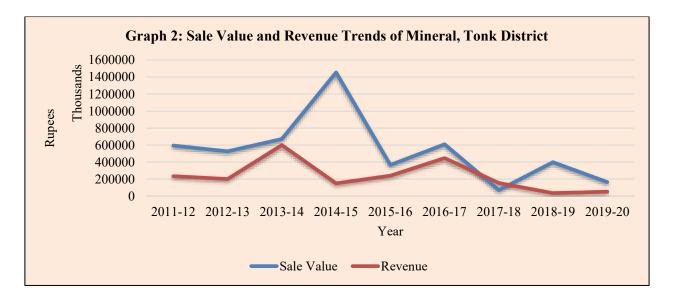
economic returns, generating ₹1,404 crores in sale value during 2014-15 alone, representing 97% of total mineral sales that year.

Table 2: Sale Value (in Rs)

|                   | 2011-  | 2012-  | 2013-  |         | 2015-  | 2016-  | 2017- | 2018-  | 2019-  |
|-------------------|--------|--------|--------|---------|--------|--------|-------|--------|--------|
| Minerals          | 12     | 13     | 14     | 2014-15 | 16     | 17     | 18    | 19     | 20     |
| Masonary          | 122505 | 122505 | 995030 | 331425  | 518515 | 101420 | 27144 | 152720 | 543380 |
| Stone             | 50     | 50     | 0      | 0       | 0      | 0      | 00    | 19     | 0      |
| Phylite-          | 289500 | 179000 | 310500 | 105000  | 115200 | 0      | 40600 | 64262  | 072400 |
| shist/Patti Katla | 0      | 0      | 0      | 103000  | 0      | U      | 49600 | 64362  | 972400 |
| Brick Earth       | 125052 | 110105 | 508770 | 820000  | 296000 | 908250 | 36540 | 495600 | 365400 |
| Brick Earth       | 000    | 000    | 00     | 0       | 00     | 00     | 000   | 0      | 0      |
| Cronita           | 0      | 0      | 0      | 0       | 0      | 0      | 0     | 240567 | 486050 |
| Granite           | U      | U      | U      | U       | U      | U      | U     | 075    | 00     |
| Slate Stone       | 107000 | 240000 | 166600 | 0       | 0      | 0      | 0     | 0      | 0      |
| Overtra           | 215686 | 236405 | 368071 | 341655  | 222672 | 762963 | 31151 | 123486 | 824415 |
| Quartz            | 75     | 40     | 76     | 50      | 00     | 00     | 400   | 201    | 00     |
| Folgnor           | 117900 | 575000 | 422560 | 513485  | 954270 | 244620 | 0     | 148305 | 233436 |
| Felspar           | 0      | 373000 | 0      | 0       | 0      | 0      | U     | 84     | 00     |
| Silica Sand       | 560700 | 0      | 0      | 0       | 0      | 0      | 0     | 20373  | 0      |
| Vanlan Daini      | 431116 | 378609 | 566008 | 140413  | 298026 | 438552 | 0     | 0      | 0      |
| Kankar-Bajri      | 800    | 600    | 950    | 3000    | 300    | 750    | U     | U      | U      |
| Total             | 594729 | 527210 | 671140 | 145505  | 365773 | 609134 | 70455 | 399196 | 164450 |
| Total             | 725    | 690    | 626    | 2650    | 350    | 450    | 400   | 614    | 300    |

Source: Department of Mines & Geology, Udaipur

Table 3: Revenue (in Rs)


|                               | 2011-       | 2012-       | 2013-  | 2014-       | 2015-       | 2016-       | 2017-       | 2018-         |               |
|-------------------------------|-------------|-------------|--------|-------------|-------------|-------------|-------------|---------------|---------------|
| Minerals                      | 12          | 13          | 14     | 15          | 16          | 17          | 18          | 19            | 2019-20       |
| Masonary                      | 448070      | 430479      | 291270 | 185600      | 280000      | 190700      | 947100      | 78050         | 3771251       |
| Stone                         | 0           | 3           | 0      | 0           | 0           | 0           | 0           | 86            | 3//1231       |
| Phylite-<br>shist/Patti Katla | 579000      | 358000      | 621000 | 518000      | 635000      | 519000      | 502000      | 48480<br>0    | 291742        |
| Brick Earth                   | 225100<br>0 | 198190<br>0 | 915800 | 225500<br>0 | 740000      | 427000      | 740000      | 39375         | 39375         |
| Granite                       | 0           | 0           | 0      | 0           | 0           | 0           | 0           | 15641<br>392  | 2284458<br>2  |
| Slate Stone                   | 43000       | 72000       | 50000  | 42000       | 21000       | 65000       | 11000       | 85000         | 50000         |
| Quartz                        | 451700      | 397320      | 622231 | 604700      | 636200      | 145820      | 995400      | 57962         | 1648833       |
| Quartz                        | 0           | 0           | 3      | 0           | 0           | 00          | 0           | 83.5          | 9             |
| Felspar                       | 120000      | 115000      | 608000 | 863000      | 216000<br>0 | 125200<br>0 | 165100<br>0 | 27168<br>16.8 | 4668741<br>.8 |



E-ISSN: 2582-2160 • Website: <a href="www.ijfmr.com">www.ijfmr.com</a> • Email: editor@ijfmr.com

| Silica Sand  | 645000 | 115000 | 10000  | 615600 | 0      | 0      | 0      | 24910 | 3663066 |
|--------------|--------|--------|--------|--------|--------|--------|--------|-------|---------|
| Sinca Sana   | 043000 | 113000 | 10000  | 0      | O      |        |        | 56.8  | .8      |
| Garnet(Abr.& | 38000  | 0.4000 | 0.4000 | 0      | 63000  | 0      | 63000  | 29211 | 15000   |
| Crude)       | 38000  | 94000  | 94000  | U      |        |        |        | 7     | 13000   |
| Vanlan Daini | 222764 | 189304 | 588946 | 131803 | 227822 | 429336 | 130886 | 0     | 0       |
| Kankar-Bajri | 000    | 800    | 200    | 000    | 000    | 000    | 000    |       |         |
| Total        | 235437 | 200318 | 600380 | 149540 | 240603 | 448088 | 153278 | 35351 | 5183209 |
| Total        | 700    | 693    | 013    | 000    | 000    | 000    | 000    | 927   | 7.25    |

Source: Department of Mines & Geology, Udaipur



Government revenue collection followed similar patterns, ranging from ₹35.35 crores in 2018-19 to ₹600.38 crores in 2013-14. The revenue-to-sale-value ratio varied significantly across minerals and years, indicating fluctuating royalty rates and collection efficiency. Granite mining, despite starting only in 2019-20, immediately contributed ₹22.84 crores in revenue, demonstrating high-value mineral potential.

### **Employment Generation Patterns**

Mining sector employment showed considerable instability, fluctuating from 655 persons in 2018-19 to 1,936 persons in 2016-17. Kankar-Bajri mining provided the largest employment base, peaking at 1,350 workers in 2015-17, while Granite mining rapidly generated 300 jobs in its inaugural year. The employment-to-production ratio varied dramatically across minerals, with Masonry Stone maintaining relatively stable employment (150-200 workers) despite production volatility.

**Table 4: Employment (in Rs)** 

|                     | 2011- | 2012- | 2013- | 2014- | 2015- | 2016- | 2017- | 2018- | 2019- |
|---------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Minerals            | 12    | 13    | 14    | 15    | 16    | 17    | 18    | 19    | 20    |
| Masonary Stone      | 150   | 192   | 150   | 170   | 155   | 155   | 165   | 200   | 165   |
| Phylite-shist/Patti |       |       |       |       |       |       |       |       |       |
| Katla               | 80    | 50    | 80    | 10    | 85    | 85    | 55    | 25    | 55    |



E-ISSN: 2582-2160 • Website: <a href="www.ijfmr.com">www.ijfmr.com</a> • Email: editor@ijfmr.com

| Brick Earth  | 80  | 90  | 80  | 200  | 225  | 225  | 150  | 150 | 110 |
|--------------|-----|-----|-----|------|------|------|------|-----|-----|
| Granite      | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 85  | 300 |
| Slate Stone  | 5   | 5   | 5   | 0    | 3    | 3    | 3    | 0   | 3   |
| Quartz       | 115 | 122 | 140 | 170  | 105  | 105  | 120  | 120 | 120 |
| Felspar      | 20  | 7   | 55  | 7    | 0    | 0    | 0    | 65  | 0   |
| Silica Sand  | 15  | 0   | 0   | 0    | 0    | 5    | 0    | 0   | 0   |
| Garnet(Abr.& |     |     |     |      |      |      |      |     |     |
| Crude)       | 0   | 0   | 0   | 0    | 0    | 8    | 13   | 10  | 7   |
| Kankar-Bajri | 350 | 429 | 350 | 850  | 1350 | 1350 | 1350 | 0   | 0   |
| Total        | 815 | 895 | 860 | 1407 | 1923 | 1936 | 1856 | 655 | 760 |

Source: Department of Mines & Geology, Udaipur

### **Environmental Degradation Analysis**

Environmental monitoring reveals severe ecological consequences of intensive mineral extraction. Groundwater levels in mining-intensive blocks like Todaraisingh and Malpura declined by up to 2.29 meters annually, indicating severe over-extraction and recharge imbalance. Water quality assessments document elevated fluoride levels exceeding 1.5 mg/L in multiple areas, alongside high nitrate concentrations linked to mining-induced soil leaching and vegetation loss.

Remote sensing analysis demonstrates progressive expansion of mining footprints into ecologically sensitive zones, with visible land degradation and vegetation cover loss. Spatial correlation analysis reveals strong relationships between high-extraction areas and declining water tables, particularly in Kankar-Bajri mining zones that showed the highest production volumes.

### **Regulatory and Governance Challenges**

The study identifies significant discrepancies between licensed mining zones and actual extraction activities observed through satellite imagery, particularly along riverbeds and forest margins. Illegal mining intensified during peak demand periods (2013-15), often bypassing environmental safeguards and regulatory oversight. Community interviews reveal widespread environmental degradation awareness but limited participation avenues in decision-making processes.

### **Key Findings and Implications**

- Economic-Environmental Trade-offs: The data reveals a stark trade-off between economic gains and environmental costs. The highest production years (2014-15) coincided with maximum environmental stress, while the lowest production period (2017-18) corresponded with reduced environmental pressure. This pattern suggests that current extraction practices are fundamentally unsustainable.
- Mineral-Specific Impacts: Kankar-Bajri extraction, while economically dominant, poses the greatest environmental threat due to its massive scale and riverbed location. Granite mining, though recently introduced, shows potential for high-value, lower-volume extraction that might offer better environmental outcomes. Traditional minerals like Masonry Stone and Quartz demonstrate more stable, manageable extraction patterns.
- **Employment Sustainability:** The extreme volatility in employment (ranging from 655 to 1,936 workers) indicates lack of sustainable livelihood opportunities in the mining sector. This instability



E-ISSN: 2582-2160 • Website: <a href="www.ijfmr.com">www.ijfmr.com</a> • Email: editor@ijfmr.com

undermines long-term community development and suggests need for diversified economic strategies.

### **Policy Recommendations**

Based on comprehensive data analysis, the study proposes a multi-dimensional policy framework:

- 1. **Production Volume Regulation:** Implement annual extraction quotas based on environmental carrying capacity rather than market demand, with **Kankar-Bajri** requiring immediate volume restrictions given its environmental impact scale.
- 2. Revenue Optimization: Establish differential royalty structures encouraging high-value, low-volume minerals like Granite while discouraging environmentally destructive bulk extraction. Implement performance-based revenue sharing with local communities.
- **3.** Employment Stabilization: Create minimum employment guarantees for mining operations and establish skill development programs for transitioning workers during low-production periods.
- **4. Environmental Integration:** Mandate environmental impact assessments for all lease renewals, with particular focus on groundwater impact evaluation. Establish mining-free zones around critical water recharge areas.
- **5. Technology Enhancement:** Deploy real-time monitoring systems for production tracking and environmental parameter assessment, enabling dynamic adjustment of extraction permissions based on environmental conditions.
- **6. Community Participation:** Establish local mineral governance committees with representation from affected communities, ensuring participatory decision-making in lease allocations and environmental protection measures.

### Conclusion

The decade from 2011 to 2020 represents a critical period in Tonk District's mineral resource exploitation, characterized by extreme production volatility, significant economic contribution, and severe environmental degradation. While mineral extraction generated substantial revenue (₹1,455 crores peak sale value) and employment (1,936 workers maximum), it imposed unsustainable environmental costs including groundwater depletion, water quality deterioration, and ecological disruption.

The analysis reveals that current extraction patterns are economically unstable and environmentally destructive. The dominance of **Kankar-Bajri** mining, while economically lucrative, poses the greatest threat to district ecology. Conversely, emerging **Granite** mining demonstrates potential for high-value, lower-impact extraction models.

Moving forward, Tonk District requires fundamental transformation in mineral resource governance, emphasizing production sustainability over volume maximization, environmental protection integration, and community participation enhancement. The proposed policy framework offers actionable pathways toward sustainable mineral resource management that preserves ecological integrity while supporting economic development.

This research contributes crucial empirical evidence to the discourse on environmental justice and sustainable resource management in India's mineral-rich regions, providing quantitative foundation for evidence-based policy formulation and implementation.



E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

#### References

- 1. Department of Mines and Geology, Rajasthan. (2011–2020). *Annual Mineral Production Reports*. Jaipur: DMG Rajasthan.
- 2. Central Ground Water Board (CGWB). (2020). *Groundwater Yearbook of Rajasthan*. Ministry of Jal Shakti, Government of India.
- 3. Rajasthan State Pollution Control Board (RSPCB). (2019). Water Quality Monitoring Reports. Jaipur: RSPCB.
- 4. Mines and Minerals (Development and Regulation) Act, 1957. Government of India.
- 5. Rajasthan Minor Mineral Concession Rules, 2017. Government of Rajasthan.
- 6. ISRO Bhuvan Portal. (2020). Remote Sensing Data for Land Use Analysis.
- 7. Singh, R., & Sharma, P. (2018). "Environmental Impacts of Mining in Rajasthan: A Case Study of Tonk District." *Journal of Environmental Geography*, 12(3), 45–56.
- 8. World Bank. (2021). *Managing Mining for Sustainable Development: A Sourcebook*. Washington, D.C.