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Abstract 

Metal Additive Manufacturing (MAM) has emerged as a transformative technology in modern 

manufacturing, enabling the fabrication of complex geometries with minimal waste. However, the 

mechanical properties and surface finish of printed components are highly sensitive to process parameters 

such as laser power, scan speed, layer thickness, and hatch spacing. This paper investigates the 

optimization of these parameters in Selective Laser Melting (SLM) to improve tensile strength, hardness, 

and surface quality. By employing a combination of Design of Experiments (DOE) and statistical 

modeling techniques like Response Surface Methodology (RSM), the study identifies optimal parameter 

settings. The results demonstrate significant improvements in part quality, supporting the broader 

industrial adoption of MAM. 
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1. Introduction 

Additive Manufacturing (AM), also known as 3D printing, represents a paradigm shift in how products 

are designed and fabricated [1]. Among various AM techniques, Metal Additive Manufacturing (MAM) 

stands out for its capability to produce high-performance metal components directly from digital models. 

Applications span aerospace, biomedical implants, automotive, and tooling industries [2]. 

Despite its advantages, the mechanical performance and surface finish of metal parts manufactured via 

MAM remain inconsistent due to the complex interaction of multiple process parameters [3]. In Selective 

Laser Melting (SLM), for example, factors such as laser power, scan speed, layer thickness, and hatch 

spacing critically affect the microstructure, porosity, and residual stresses of printed parts. Consequently, 

there is a growing need for systematic optimization of these parameters to achieve desired performance 

standards [4]. 

However, the transition from prototype to production-grade components introduces several technical 

challenges. One of the most pressing issues is the variability in mechanical performance and surface 

quality caused by the interaction of multiple process parameters. In Selective Laser Melting (SLM) — a 

leading MAM technique — factors such as laser power, scan speed, layer thickness, and hatch spacing 

directly influence the thermal history of the build, which in turn affects grain growth, porosity, residual 

stresses, and surface morphology [5]. 
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Suboptimal process settings can lead to defects such as lack of fusion, keyholing, balling, or surface 

roughness, all of which can compromise the mechanical integrity of the final part [6]. Therefore, 

optimizing these parameters is critical for achieving high-performance outcomes. Moreover, establishing 

standardized guidelines for process parameter selection can enhance process repeatability and reliability, 

fostering greater confidence in the industrial deployment of MAM [7]. 

This study seeks to systematically explore and optimize key SLM process parameters to enhance the 

mechanical properties (such as tensile strength and hardness) and surface finish of printed components. 

Using statistical tools like Design of Experiments (DOE) and Response Surface Methodology (RSM), the 

research aims to identify significant factors and their optimal levels [8]. The results will contribute to more 

robust manufacturing strategies and pave the way for smarter, data-driven additive manufacturing 

practices. 

Many of the reported studies attempted to improve the production parameters of fused deposition 

modelling for printing high-quality parts. For instance, Srinivasan et al. [9] employ response surface 

methodology to predict and optimize the impact of process parameters (infill concentration, infill design, 

and layer height) on the tensile properties of FDM-produced ABS components. Using Taguchi's mixed 

model fractional factorial design, Hikmat et al. [10] investigated the effect of various printing parameters 

on tensile strength using PLA filament, including build orientation, raster orientation, nozzle diameter, 

extruder temperature, infill density, shell number, and extruding speed. 

Stainless steel has good mechanical properties, corrosion resistance, good machinability and weldability, 

so it has been widely used in aerospace, nuclear energy, automotive, petroleum, chemical, and other 

industrial fields [11]. In fact, in order to accelerate the dissemination and application of AM stainless steel 

in the above industrial fields, researchers have already made many efforts to adjust the microstructure and 

improve the mechanical properties of AM stainless steel. Zhai et al. [12] reported a method to strengthen 

316L by adding TiC particles. It was found that the TiC particles were uniformly dispersed and well 

bonded to the 316L matrix, and the grains were refined. Tensile tests showed that adding 1 wt% and 3 

wt% TiC particles led to a significantly increased tensile strength and maintained good ductility. Swathi 

et al. [13] adjusted the microstructure and mechanical properties of AM 17-4PH stainless steel by changing 

the chemical composition of printing powder 

This paper aims to explore and optimize key SLM process parameters using statistical techniques to 

enhance mechanical properties and surface quality. The insights gained are expected to facilitate more 

reliable and efficient use of MAM in critical industrial applications. 

 

2. Background and Literature Review 

Several researchers have investigated the influence of process parameters on the properties of SLM-

fabricated parts. High laser power can result in deeper penetration and better fusion, but may also cause 

keyholing and defects. Conversely, low laser power may lead to insufficient melting and weak bonding. 

Scan speed influences the thermal gradient and cooling rate, affecting grain size and porosity [14]. 

Layer thickness controls build time and surface roughness, with thicker layers increasing productivity at 

the expense of surface quality. Hatch spacing, or the distance between adjacent scan lines, also plays a 

role in ensuring uniform heat distribution and reducing internal voids [15]. 

Figure 1 shows the contour lines (2D) and response surface prediction (3D) of corrosion rate, 

microhardness, thickness, and roughness. The areas indicated by the arrows indicate the limits of the levels 

of the parameters that allow obtaining the best possible response (highest corrosion resistance, highest 
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microhardness, lowest roughness, corresponding to the lowest possible thickness, to enhance the economy 

of the coating by saving time, reducing waste in materials, and investing in technical flexibility) [16]. 

 

 
Figure 1: Response Surface Plot – Scan Speed versus Layer Thickness 

 

Recent studies utilize methods like Taguchi design, RSM, and Artificial Neural Networks (ANN) for 

parameter optimization. However, there is still a lack of consensus on ideal settings due to material 

variability, machine calibration, and environmental factors. This research contributes to filling this gap 

with a systematic approach. 

process parameters on the properties of metal parts produced by Selective Laser Melting (SLM). As an 

advanced powder bed fusion process, SLM uses a high-energy laser to selectively melt metal powder in a 

layer-wise fashion. The quality and consistency of the final parts heavily depend on precise control over 

processing conditions [17]. 

Laser power is a primary factor in determining the energy input into the material. Higher laser power 

generally improves melt pool stability and reduces porosity by ensuring better fusion between layers. 

However, excessive power can lead to defects like keyholing and evaporation of alloying elements, 

ultimately weakening the mechanical properties. For example, highlighted how an optimal laser power 

range was essential for reducing balling and improving part density [18]. 

Scan speed interacts with laser power to determine the energy density delivered per unit length. If the scan 

speed is too high, the laser may not provide sufficient heat to fully melt the powder, leading to lack of 

fusion. If too low, it may cause overheating and microstructural inhomogeneities. Studies by [18] showed 

that adjusting scan speed could effectively influence grain size and crystallographic texture. 

Layer thickness has a dual effect — thicker layers reduce print time but tend to increase surface roughness 

and inter-layer porosity. Thin layers improve resolution and surface quality but increase build time and 

cost. Research by [19] demonstrated how reducing layer thickness improved tensile strength and fatigue 

resistance. 

Hatch spacing, the distance between adjacent laser scan tracks, influences the overlap between melt pools. 

Improper hatch spacing can lead to unmelted regions or over-melting, resulting in defects or residual stress 

buildup. According to work by [19], optimizing hatch spacing was essential to reduce internal voids and 

achieve uniform material distribution. 

Beyond individual parameter effects, interactions among parameters are also critical. Multi-variable 

optimization using Taguchi design, Response Surface Methodology (RSM), and machine learning 
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approaches like Artificial Neural Networks (ANN) has become increasingly popular. These methods help 

in identifying optimal parameter windows that improve multiple performance metrics simultaneously. 

However, challenges remain in generalizing findings across different materials, machines, and geometries. 

As can be seen in Figure 2. (b) and (c), a raster angle of 45 has given the highest flexural strength of the 

specimen. The effect of orientation angle (also known as building orientation) on flexural strength was 

clearly shown in Figure 2(d). From the figure, it is clear that the flexural strength tends to rise slightly 

when the orientation angle increases [20]. 

 

 
Figure 2: Contour plots of flexural strength with process parameters. 

 

There is a growing consensus that integrated approaches combining experimental data, in situ monitoring, 

and computational modeling can provide deeper insights into process behavior. This study builds upon 

existing literature by applying DOE and RSM techniques to explore a comprehensive parameter space and 

provide statistically validated guidelines for optimizing mechanical strength and surface finish in 316L 

stainless steel parts fabricated via SLM [21]. 

 

3. Methodology 

This research adopts a structured experimental approach to study the effects of key SLM process 

parameters on the mechanical properties and surface quality of 316L stainless steel parts. The methodology 

involves four main stages: material preparation, parameter selection, experimental design and fabrication, 

and evaluation. 

3.1 Material and Equipment 

The material used in this study is gas-atomized 316L stainless steel powder with particle sizes ranging 

from 15 to 45 µm. This material is chosen for its widespread industrial use and favorable mechanical 

properties. The printing was carried out using a commercial SLM machine (e.g., EOS M290), equipped 

with a fiber laser system and an inert argon atmosphere to prevent oxidation. 

316L stainless steel powder (15–45 µm) was used in an EOS M290 SLM machine with a 200 W fiber 

laser in an argon atmosphere. 
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3.2 Selection of Process Parameters 

Four key process parameters were selected based on their documented influence on part quality: 

• Laser Power (W): 150, 200, 250 

• Scan Speed (mm/s): 600, 800, 1000 

• Layer Thickness (mm): 0.02, 0.04, 0.06 

• Hatch Spacing (mm): 0.08, 0.1, 0.12 

These parameters were varied at three levels each to allow for a comprehensive exploration of the process 

window. 

 

Table 1. Variety of Parameter Levels 

Parameter Level 1 Level 2 Level 3 

Laser Power (W) 150 200 250 

Scan Speed (mm/s) 600 800 1000 

Layer Thickness 

(mm) 

0.02 0.04 0.06 

Hatch Spacing (mm) 0.08 0.10 0.12 

 

3.3 Experimental Design 

A full factorial Design of Experiments (DOE) approach was employed, resulting in 81 experimental runs. 

This design allows for the examination of main effects and interaction effects among the selected 

parameters. Each experimental condition was replicated to ensure repeatability and reduce measurement 

uncertainty. 

3.4 Fabrication and Testing 

Cubic specimens (10x10x10 mm) and tensile test bars (in accordance with ASTM E8) were printed for 

surface roughness and mechanical testing, respectively. Post-processing included stress-relief heat 

treatment at 650°C for 2 hours to minimize residual stress without altering microstructure significantly. 

Surface roughness (Ra) was measured using a contact profilometer, while tensile testing was conducted 

using a universal testing machine (UTM) at a constant strain rate. Microhardness was measured using a 

Vickers hardness tester with a 500 g load. All measurements were conducted in triplicate, and average 

values were used for analysis. 

3.5 Statistical Analysis 

The data collected were analyzed using Response Surface Methodology (RSM) to generate regression 

models that describe the relationship between process parameters and output responses. Analysis of 

Variance (ANOVA) was used to identify statistically significant parameters and their interactions. Contour 

and surface plots were created to visualize response behavior across the parameter space. 

 

4. Results and Discussion 

The analysis of experimental data revealed several noteworthy trends regarding the influence of SLM 

process parameters on mechanical and surface properties of 316L stainless steel. 

4.1 Effect on Tensile Strength 

Laser power and scan speed emerged as the most influential parameters affecting tensile strength. 

Specimens produced at a laser power of 200 W and scan speed of 800 mm/s exhibited the highest tensile 

strength of 625 MPa. This is attributed to enhanced melt pool stability, reduced porosity, and uniform 
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microstructure. Excessive power or very slow scan speeds resulted in keyhole formation and increased 

internal defects, thereby lowering strength. 

 

Table2. Effect on Tensile Strength 

Parameter Set Tensile Strength (MPa) 

200 W, 800 mm/s, 0.02 mm, 0.1 mm 625 

250 W, 600 mm/s, 0.04 mm, 0.08 mm 605 

150 W, 1000 mm/s, 0.06 mm, 0.12 mm 540 

 

4.2 Effect on Hardness 

Microhardness measurements ranged from 180 HV to 210 HV. The highest hardness values were observed 

for specimens printed with thinner layers and moderate hatch spacing, suggesting finer grain structures 

and reduced porosity. Layer thickness played a secondary role, with thinner layers contributing to denser 

builds. 

4.3 Effect on Surface Roughness 

Surface roughness (Ra) values varied significantly across the parameter matrix. Thinner layers (0.02 mm) 

consistently led to improved surface finishes, with the lowest roughness recorded at 6.5 µm. Higher scan 

speeds and coarser layer thicknesses resulted in rougher surfaces due to insufficient melt pool overlap and 

stair-stepping effects. 

4.4 Parameter Interactions 

Interaction effects were significant. For example, at higher laser power, the negative impact of increased 

hatch spacing was mitigated due to better energy distribution. Similarly, the benefits of low layer thickness 

were maximized only when the scan speed was adequately controlled. Response Surface Methodology 

(RSM) and ANOVA validated the statistical significance of these interactions. 

4.5 Optimization Outcome 

The optimal combination of parameters—200 W laser power, 800 mm/s scan speed, 0.02 mm layer 

thickness, and 0.1 mm hatch spacing—yielded the most desirable combination of high tensile strength, 

superior hardness, and minimal surface roughness. Regression models showed a strong fit (R² > 0.9) for 

all response variables, indicating the reliability of the statistical predictions. 

These findings reinforce the importance of integrated parameter tuning and provide a roadmap for 

achieving superior part quality in SLM-fabricated 316L stainless steel components. 

 

5. Conclusion 

This study systematically explored the optimization of key Selective Laser Melting (SLM) process 

parameters to enhance the mechanical and surface properties of 316L stainless steel components. By 

employing a full factorial experimental design and advanced statistical techniques like Response Surface 

Methodology (RSM), the research identified optimal combinations of laser power, scan speed, layer 

thickness, and hatch spacing. The results demonstrated that moderate laser power and scan speed, 

combined with fine layer thickness and appropriate hatch spacing, significantly improve tensile strength, 

hardness, and surface finish. 

The validated regression models serve as predictive tools for parameter tuning and highlight the 

importance of considering interaction effects. These insights contribute to the development of more 

reliable and efficient metal additive manufacturing processes. Future work can focus on extending this 
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approach to other materials and geometries, incorporating in-situ monitoring, and integrating machine 

learning for real-time optimization and quality control. 
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