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ABSTRACT 

A new model diminution technique is proposed for the reduction of complexity of higher order linear 

dynamical systems. In this proposed method, a generalized pole clustering technique is used for 

obtaining the denominator polynomial of the lower order plant and the numerator polynomial is 

evaluated by applying the Time moment matching technique. The generalized pole clustering algorithm 

promises the preservation of stability and dominant poles of the actual system in the reduced order plant. 

The performance error indices such as integral square error (ISE), integral absolute error (IAE), integral 

time weighted absolute error (ITAE) and relative integral square error (RISE) are used to validate the 

proposed technique. By using the transfer function of the simplified order plant, the PID and lead/lag 

compensators are designed by using a moment matching algorithm. This controller is applied to the 

original large-scale system and the response of the closed loop system is matching with the response of 

the desired reference model. 

 

KEYWORDS: Large scale systems, Model order reduction, Multidimensional systems, Pole clustering 

method, Transfer function, Controller design, Integral square error (ISE), Integral absolute error (IAE), 

Integral time weighted absolute error (ITAE) and relative integral square error (RISE). 

 

1. INTRODUCTION 

With the increasing features of dynamical systems, the complexity and order of the systems are 

increased simultaneously. Analysis and simulation of these systems by a digital system creates several 

limitations such as storage memory, computational time and computation astringency to the higher order 

systems [1]–[3]. Model order reduction (MOR) plays an important role in the analysis and synthesis of 

large scale systems [4]–[6]. MOR is illustrated as the method of approximating a complex system into a 

simple plant in such a way that the estimated system must preserve the fundamental behavior of the 

original system. The exploration and controller design for the simple system is easier as compared to the 

complex system [3], [7]–[11]. From the past few decades, model diminution is a commonly used 

technique for the reduction of complexity of higher order dynamical plants. 

Nowadays, the application of model reduction is extended in the numerous areas of sciences and 

engineering. The design of an electric motor by finite element analysis is a high-dimensional system and 

this process is time consuming and computationally inefficient. The MOR based on proper orthogonal 

decomposition is used to compensate for these problems for the design of electric motors [12].  In the 
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field of power system stability models, the model diminution schemes are focused on the reduction of 

complexity of large scale power system models [13]–[17]. The controller design for large scale systems 

is a difficult task and the model diminution technique plays an imperative role in the field of control 

systems [18]–[21]. The model reduction is also extended for the neutral type control systems (a time 

delay system that holds time delays mutually in its state and derivatives of state) [22], [23]. In [24]–

[26], the model reduction for decreasing the mathematical complexity of nonlinear analog circuits has 

been discussed. From the last two decades, the model reduction got great attention in the reduction of 

higher dimensional electromagnetic systems [27], [28]. In the chemical industry, the model reduction 

methods are used for the analysis and control of large scale distillation column linear systems [29]. In 

[30], the authors discussed the applications of model diminution for the simplification of complex 

stochastic plants. Binion and Chen explained the usage of model reduction for the analysis of complex 

microelectromechanical models [31]. The computational efficiency of the gear contact simulation is 

enhanced by using the MOR technique based on Craig–Bampton method [32]. 

For the simplification of large scale systems, various model reduction techniques are proposed in the 

frequency domain [33]–[40] and in the time domain [41]–[45]. These methods have numerous 

advantages but also have limitations. To overcome their limitations, several model reduction methods 

have been proposed based on the combination of these methods [46]–[55]. Among these methods, the 

pole clustering method is one of the widely used model reduction methods for the higher dimensional 

linear dynamic systems [37]. One of the most popular methods for model reduction is pole clustering 

because it can be used for the simplification of minimum as well as non-minimum phase systems. It can 

be also used for the simplification of systems having non-strictly and strictly proper transfer functions.  

In this method, the poles of the actual model are grouped into various clusters and their cluster centers 

are used for obtaining the reduced model. For the proper matching of the time responses of the original 

and reduced systems, the extra mathematical calculations are required for the determination of the gain 

adjustment factor and tuning factor. The process of finding these factors enhances the simulation time 

and storage memory. To circumvent these drawbacks, various system diminution techniques based on 

the pole clustering methods have been discussed in [7], [8], [56]–[64]. 

In this article, a new system reduction scheme is proposed which also overcomes the limitations of the 

pole clustering scheme [37]. The proposed method can be applied for the reduction of large-scale non-

minimum, minimum phase systems and the systems having non-strictly and strictly proposer transfer. A 

generalized pole clustering algorithm is used for the determination of the denominator and the time 

moment matching method is used for obtaining the numerator of the reduced model. By using the time 

moment matching technique, the proposed algorithm ensures the matching of the steady state responses 

of the actual and reduced systems. Due to that, the gain adjustment factor is not required in the proposed 

method as it requires in the pole clustering method [37]. By using the generalized pole clustering 

method, almost all dominant poles of the original system are retained in the reduced model due that the 

transient response of the reduced model is approximately matching with the transient response of the 

original system. Therefore, the tuning factor is also not required in the proposed method for the 

matching of the transient responses. The proposed technique is simple, precise and guarantees the 

stability of the reduced system if the given complex system is stable. The remaining article is structured 

as follows. In Section 2, the problem statement of model diminution is presented. The basic algorithms 

of the proposed model diminution method are explained in Section 3. The application of the proposed 

method for the designing of the controller is explained in Section 4. The numerical simulations of the 
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proposed method are given in Section 5. The conclusion and future works of the proposed method are 

drawn in Section 6. 

 

2. PROBLEM FORMULATION 

Let the transfer function of the large-scale single input single output linear dynamic plant be in the form 

of 

𝐺𝑝(𝑠) =
𝑁(𝑠)

𝐷(𝑠)
 =

∑ 𝑑𝑖𝑠𝑖𝑟−1
𝑖=0

∑ 𝑒𝑖𝑠𝑖𝑟
𝑖=0

=
𝑑0+𝑑1𝑠+⋯+𝑑𝑛−1𝑠𝑛−1

𝑒0+𝑒1𝑠+𝑒2𝑠2+⋯+𝑒𝑛𝑠𝑛               (1) 

where 𝑑0, 𝑑1 … 𝑑𝑛−1and 𝑒0, 𝑒1 … 𝑒𝑛 are the known scalar constants of the actual complete order system. 

The main objective of the model reduction is to compute the unknown parameters of 𝑟𝑡ℎ order (𝑟 < 𝑛) 

reduced system having the transfer function in the form of 

𝑅𝑟(𝑠) =
𝑄𝑟(𝑠)

𝑃𝑟(𝑠)
=

∑ 𝑞𝑖𝑠𝑖𝑟−1
𝑖=0

∑ 𝑝𝑖𝑠𝑖𝑟
𝑖=0

=
𝑞0+𝑞1𝑠+𝑞2𝑠2+⋯+𝑞𝑟−1𝑠𝑟−1

𝑝0+𝑝1𝑠+𝑝2𝑠2+⋯+𝑝𝑟−1𝑠𝑟−1+𝑝𝑟𝑠𝑟        (2) 

where 𝑞0, 𝑞1 … 𝑞𝑟−1  and 𝑝0, 𝑝1 … 𝑝𝑟 are the unknown scalar constants of the desired reduced system. 

Consider the transfer matrix of  𝑛𝑡ℎorder large scale multi-input multi output LTI system with 𝑢 inputs 

and 𝑣 outputs as follows 

[𝐺𝑝(𝑠)] =
1

𝐷(𝑠)
[

𝑎11(𝑠) 𝑎12(𝑠) ⋯ 𝑎1𝑢(𝑠)

𝑎21(𝑠) 𝑎22(𝑠) ⋯ 𝑎2𝑢(𝑠)
⋮ ⋮ ⋮ ⋮

𝑎𝑣1(𝑠) 𝑎𝑣2(𝑠) ⋯ 𝑎𝑣𝑢(𝑠)

]      (3) 

= [𝑔𝑖𝑗(𝑠)]𝑣×𝑢                              (4) 

where 𝑖 = 1, 2, 3, … , 𝑣;  𝑗 = 1, 2, 3, … , 𝑢. Hence 𝑔𝑖𝑗(𝑠) can be expressed as 

𝑔𝑖𝑗(𝑠) =
𝑎𝑖𝑗(𝑠)

𝐷(𝑠)
                                (5) 

The equivalent transfer matrix of 𝑟𝑡ℎ order estimated plant [𝑅𝑟(𝑠)] with 𝑢 inputs and 𝑣 outputs is 

synthesized as follows 

[𝑅𝑟(𝑠)]  =
1

𝑃𝑟(𝑠)
[

𝑏11(𝑠) 𝑏12(𝑠) ⋯ 𝑏1𝑢(𝑠)

𝑏21(𝑠) 𝑏22(𝑠) ⋯ 𝑏2𝑢(𝑠)
⋮ ⋮ ⋮ ⋮

𝑏𝑣1(𝑠) 𝑏𝑣2(𝑠) ⋯ 𝑏𝑣𝑢(𝑠)

]         (6) 

= [𝑟𝑖𝑗(𝑠)]𝑣×𝑢                                  (7) 

where 𝑖 = 1, 2, 3, … , 𝑣;  𝑗 = 1, 2, 3, … , 𝑢. Therefore 𝑟𝑖𝑗(𝑠) can be written as 

𝑟𝑖𝑗(𝑠) =
𝑏𝑖𝑗(𝑠)

𝑃𝑟(𝑠)
                              (8) 

where 𝑔𝑖𝑗(𝑠) and 𝑟𝑖𝑗(𝑠) are the numerous components of the complete dimensional and the lower 

dimensional transfer function matrices correspondingly. The objective of the article is to realize the 𝑟𝑡ℎ 

order reduced systems in the form of Equations (2) and (6) from the Equations (1) and (3) respectively 

and which preserve the fundamental properties of the original model. 

 

3. PROPOSED MODEL REDUCTION METHOD 

For obtaining the reduced order model, the proposed method has been explained by describing the 

following two steps. The proposed method for the determination of the denominator polynomial is based 

on the finding of clusters and cluster centers. The following steps are used for clustering the poles in the 

s-plane. 
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3.1 Process for evaluating the denominator polynomial of the simplified model 

The time and frequency responses of any dynamical plants are affected by the position, density (numbers 

of poles lie within a specific region) and the number of poles of the plant. In most of the model 

diminution methods, the poles far away from the vertical axis of the s-plane are ignored [35], [48], [54], 

[65]–[67]. In this proposed process, the effects of all poles of the actual plant are considered in the 

evaluation of the approximated plant. For the 𝑟𝑡ℎ order simplified model, all the poles of the actual plant 

are grouped into the "𝑟" clusters. The poles of the cluster reflect their impact in the cluster center of that 

group. The poles in a particular group are included based on their dominance i.e. relative distance from 

the origin of the s-plane. To find the clusters (groups) of the poles, the following steps are used. 

1) Complex and real poles are grouped individually. 

2) The left half and right half of s-plane poles are grouped independently. 

3) Poles lying at the origin and vertical axis of the s-plane are preserved directly in the lower 

dimensional system. 

Clustering of real poles 

Let us assume the higher dimensional plant of Equation (1) in the pole-zero form as given follows 

𝐺𝑝(𝑠) =
𝑁(𝑠)

𝐷(𝑠)
 

where, 

𝑁(𝑠) = (𝑠 + 𝑧1)(𝑠 + 𝑧2) … (𝑠 + 𝑧𝑟−1)(𝑠 + 𝑧𝑟)(𝑠 + 𝑧𝑟+1) … (𝑠 + 𝑧2𝑟−1)(𝑠 + 𝑧2𝑟)(𝑠 + 𝑧2𝑟+1). . . (𝑠 +

𝑧𝑛−1)        (9) 

and 

𝐷(𝑠) = (𝑠 + 𝑝1)(𝑠 + 𝑝2) … (𝑠 + 𝑝𝑟−1)(𝑠 + 𝑝𝑟)(𝑠 + 𝑝𝑟+1) … (𝑠 + 𝑝2𝑟−1)(𝑠 + 𝑝2𝑟)(𝑠 + 𝑝2𝑟+1). . . (𝑠 +

𝑝𝑛)         (10) 

Let the order of the lower order model is 𝑟 (𝑟 < 𝑛) and for  𝑟𝑡ℎ order simplified model, 𝑟 number of 

groups (clusters) of the poles are formed. The left half of s-plane poles are organized in the ascending 

sequence as 

−𝑝1, −𝑝2, … , −𝑝𝑗, . . . , − 𝑝𝑟 , … , − 𝑝𝑛∀ |𝑝𝑗| < |𝑝𝑗+1|       (11) 

The first pole is located in the cluster−1, the second pole is located in the cluster−2 and the  𝑟𝑡ℎ pole is 

located in the cluster−𝑟. In the same way, (𝑟 + 1)𝑡ℎ pole is located in the cluster−1, (𝑟 + 2)𝑡ℎ pole is 

located in the cluster−2 and 2𝑟𝑡ℎ  pole is kept in the cluster−𝑟 and this process is stopped after the 

allocation of the last pole. The main benefit of the placing of the poles in this way is that each cluster 

will have starting poles of Equation (11). The starting poles of Equation (11) are dominating poles 

compared to the ending poles of Equation (11). In this way, “𝑟” dominating poles of the higher 

dimensional plant are allocated in all “𝑟” clusters. Hence, each cluster keeps the dominating pole of the 

original system as compared to the present algorithms [37], [56]–[64] which keeps all dominating poles 

in the first cluster. After the allocation of the poles in the groups, the cluster centers of groups are 

attained as 

𝑐1𝑝 = − {([
1

|𝑝1|𝑋] + [
1

|𝑝𝑟+1|𝑋] + [
1

|𝑝2𝑟+1|𝑋] + ⋯ [
1

|𝑝𝑘|𝑋]) 𝑘⁄ }
−(1 𝑋⁄ )

      (12) 

𝑐2𝑝 = − {([
1

|𝑝2|𝑋] + [
1

|𝑝𝑟+2|𝑋] + [
1

|𝑝2𝑟+2|𝑋] + ⋯ [
1

|𝑝𝑙|𝑋]) 𝑙⁄ }
−(1 𝑋⁄ )

       (13) 

…            …              … …       … 
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𝑐𝑟𝑝 = − {([
1

|𝑝𝑟|𝑋] + [
1

|𝑝2𝑟|𝑋] + [
1

|𝑝3𝑟|𝑋] + ⋯ [
1

|𝑝𝑚|𝑋]) 𝑚⁄ }
−(1 𝑋⁄ )

   (14) 

 

where, 𝑐1𝑝,  𝑐2𝑝, … , 𝑐𝑟𝑝  are the cluster centers of the clusters and 𝑋 is the order of the root. The value of 

𝑋 can be taken as a natural number and it depends upon the requirement of the accuracy of the lower 

dimensional plant. And 𝑘, 𝑙 and 𝑚 are the number of poles allocated in the first group, second cluster and 

𝑟𝑡ℎ group respectively. Depending upon the number of poles in the large-scale plants, the values of 

𝑘, 𝑙 and 𝑚 may have an equal or different value. For the particular value of the order of the root (𝑋), the 

cluster centers given in Equations (12-14) are dependent upon the poles which are nearer to the origin of 

the s-plane. As the value of 𝑋 increases from more than one, the cluster centers are going nearer to the 

dominant poles. Because the inverse of the root of any smaller magnitude quantity is converted into a 

larger magnitude quantity as compared to the inverse of the root of a larger magnitude quantity. Hence, 

it is summarized that each cluster center is dependent upon the dominant pole and the value of the 

cluster center is nearer to the dominant pole of that cluster. It is also obvious from Equations (12-14) that 

when 𝑋 is equal to one, the proposed algorithm of clustering is the same as the standard pole clustering 

technique given in [37]. After finding the cluster centers, the denominator coefficients of the lower 

dimensional model are attained as 

𝐷𝑟(𝑠) = (𝑠 − 𝑐1𝑝)(𝑠 − 𝑐2𝑝) … (𝑠 − 𝑐𝑟𝑝)          (15) 

The cluster centers of real poles existing in the right half of the s-plane are determined by changing the 

negative sign with the positive sign of the cluster centers in the Equations (12-14). 

 

Clustering of complex poles 

For the 𝑟𝑡ℎ order reduced model, (𝑟 2)⁄  pair of clusters of complex poles should be constructed. 

Consider the denominator of the 𝑛𝑡ℎ order original model having complex poles only as 

𝐷(𝑠) = (𝑠 + 𝑎1𝑝 ± 𝑗𝑏1𝑝)(𝑠 + 𝑎2𝑝 ± 𝑗𝑏2𝑝). . . (𝑠 + 𝑎𝑟𝑝 2⁄ ± 𝑗𝑏𝑟𝑝 2⁄ ). . . (𝑠 + 𝑎𝑛𝑝 2⁄ ± 𝑗𝑏𝑛𝑝 2⁄ )  (16) 

On the basis of dominance of the poles existing in the left half of the s-plane are arranged in ascending 

order and allocated in (𝑟 2) ⁄ pair of groups. The group centers of are achieved as 

𝐴1𝑝 ± 𝑗𝐵1𝑝 = − {([
1

|𝑎1𝑝|
𝑋] + [

1

|𝑎(𝑟+1)𝑝|
𝑋] + ⋯ + [

1

|𝑎𝑘𝑝|
𝑋]) 𝑘⁄ }

−(1 𝑋⁄ )

±

{([
1

|𝑏1𝑝|
𝑋] + [

1

|𝑏(𝑟+1)𝑝|
𝑋] + ⋯ + [

1

|𝑏𝑘𝑝|
𝑋]) 𝑘⁄ }

−(1 𝑋⁄ )

 (17) 

 

𝐴2𝑝 ± 𝑗𝐵2𝑝 = {([
1

|𝑎2𝑝|
𝑋] + [

1

|𝑎(𝑟+2)𝑝|
𝑋] + ⋯ + [

1

|𝑎𝑙𝑝|
𝑋]) 𝑙⁄ }

−(1 𝑋⁄ )

±

  {([
1

|𝑏2𝑝|
𝑋] + [

1

|𝑏(𝑟+2)𝑝|
𝑋] + ⋯ + [

1

|𝑏𝑙𝑝|
𝑋]) 𝑙⁄ }

−(1 𝑋⁄ )

(18) 

 

….                ….                          … 

 

𝐴𝑟𝑝 2⁄ ± 𝑗𝐵𝑟𝑝 2⁄ = − {([
1

|𝑎𝑟𝑝 2⁄ |
𝑋] + [

1

|𝑎𝑟𝑝|
𝑋] + ⋯ + [

1

|𝑎𝑚𝑝|
𝑋]) 𝑚⁄ }

−(1 𝑋⁄ )

±
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{([
1

|𝑏𝑟𝑝 2⁄ |
𝑋] + [

1

|𝑏𝑟𝑝|
𝑋] + ⋯ + [

1

|𝑏𝑚𝑝|
𝑋]) 𝑚⁄ }

−(1 𝑋⁄ )

(19) 

 

For the complex poles, 𝐴𝑖𝑝 2⁄ ± 𝑗𝐵𝑖𝑝 2 ⁄ (𝑖 = 1, 2, … 𝑟) are the group centers. The numbers of poles 

allocated in the first group, second cluster and in 𝑟𝑡ℎ group are represented as 𝑘, 𝑙, 𝑎𝑛𝑑  𝑚 respectively. 

The order of the root is represented as 𝑋, its value is dependent upon the required accuracy of the lower 

dimensional plant. By applying the group centers of the complex poles, the simplified denominator 

polynomial is computed as 

𝐷𝑟(𝑠) = (𝑠 − 𝐴1𝑝 ± 𝑗𝐵1𝑝)(𝑠 − 𝐴2𝑝 ± 𝑗𝐵2𝑝) … (𝑠 − 𝐴𝑟𝑝 2⁄ ± 𝑗𝐵𝑟𝑝 2⁄ )                (20) 

The cluster centers the right half of 𝑠-plane complex poles are determined by replacing the negative sign 

with the positive sign in the Equations (17-19). 

Clustering of the real and complex poles 

The cluster centers are determined in the same way as the Equations (12-14) are used for the real poles 

and Equations (17-19) are used for the complex poles. The number of clusters made for the real poles 

and the number of clusters required for the complex poles is finalized on the basis of the order of the 

reduced model. For the  𝑟𝑡ℎ order reduced system, assume 𝛼 clusters are made for the real poles and 

𝛽 clusters are then made for the complex poles, the proposed denominator polynomial of the simplified 

model is determined as 

     𝐷𝑟(𝑠) = ∏ (𝑠 − 𝑐𝑖𝑝)
𝛼,𝛽
𝑖=1,𝑗=𝛼+1 (𝑠 − 𝐴𝑗𝑝 ±   𝑗𝐵𝑗𝑝)     |   𝛼 + 𝛽 = 𝑟                 (21) 

3.2 Procedure for computing the numerator coefficients of the simplified model 

The time moment matching method is a standard model diminution scheme for the simplification of the 

higher dimensional plants [39], [68]–[72]. It assures the conservation of initial few time moments of the 

higher dimensional plant in the reduced  dimensional plant but it does not ensure the stability of the 

lower dimensional plant even though the higher dimensional plant is stable [68], [73]. To overcome the 

instability problem of the time moment matching algorithm, the denominator polynomial of the reduced 

model is achieved by using the generalized pole clustering method as discussed in Section 3.1. To 

preserve the features of the Moment matching algorithm method in the proposed process, the numerator 

of the proposed reduced system is achieved by the Moment matching algorithm method. The power-

series expansion of 𝐺(𝑠) of Equation (1) around 𝑠 = 0 is 

𝐺𝑝(𝑠) =
∑ 𝑑𝑖𝑠𝑖𝑟−1

𝑖=0

∑ 𝑒𝑖𝑠𝑖𝑟
𝑖=0

= 𝑐0 + 𝑐1𝑠 + 𝑐2𝑠2 + ⋯ + 𝑐𝑟𝑠𝑟 + ⋯       (22) 

The parameters {𝑐𝑗: 𝑗 = 1, 2, … , ∞} are the time moments of the original complete order model 𝐺(𝑠) and 

it is determined by applying the moment generating algorithm given in [33], [74], [75]. The Equation 

(22) is obtained by using the Taylor series expansion of 𝐺(𝑠) about 𝑠 = 0 of Equation (1) as follows 

𝑐0 = 𝑑0 

𝑐𝑖 =
1

𝑒0
[𝑑𝑖 − ∑ 𝑒𝑖𝑐𝑖−𝑗

𝑖
𝑗=1 ],   𝑖 > 0                     (23) 

𝑒𝑖 = 0, 𝑖 > 𝑛 − 1 

The numerator coefficients of the reduced system can be attained by comparing the Equations (2) with 

(22) as follows 

𝑅𝑟(𝑠) =
𝑄𝑟(𝑠)

𝑃𝑟(𝑠)
=

∑ 𝑞𝑖𝑠𝑖𝑟−1
𝑖=0

∑ 𝑝𝑖𝑠𝑖𝑟
𝑖=0

=
𝑞0+𝑞1𝑠+𝑞2𝑠2+⋯+𝑞𝑟−1𝑠𝑟−1

𝑝0+𝑝1𝑠+𝑝2𝑠2+⋯+𝑝𝑟−1𝑠𝑟−1+𝑝𝑟𝑠𝑟
= 𝑐0 + 𝑐1𝑠 + 𝑐2𝑠2 + ⋯ + 𝑐𝑟𝑠𝑟      (24) 
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After cross-multiplication of Equation (23), the coefficients of the various power of “𝑠” are compared 

and it gives the following “𝑟” numbers of equations. 

 𝑞0 = 𝑐0𝑝0 

𝑞1 = 𝑐0𝑝1 + 𝑐1𝑝0 

⁞                               (25) 

  𝑞𝑟−1 = 𝑐0𝑝𝑟−1 + 𝑐1𝑝𝑟−2 + ⋯ + 𝑐𝑟−1𝑝0 

The proposed numerator polynomial 𝑄𝑟(𝑠) is obtained by using initial “𝑟” numbers of time moments of 

the original system. Therefore it promises the conservation of first “𝑟” time moments in the reduced 

model [7], [8], [33], [62], [68], [73], [76]. 

The most remarkable fact about the proposed method is that the proposed denominator polynomial 

evaluated from this method contains the effect of all the poles regardless of all former methods, which 

designs a denominator polynomial with just by using dominant poles only. Another most interesting fact 

about the proposed method is that the reduced denominator polynomial contains all dominant poles 

irrespective of the reduced denominator polynomial obtained by several other techniques based on pole 

clustering methods containing only one dominant pole of the original system. So, these make the 

proposed technique the best suitable model order reduction method. 

 

4. DESIGN OF CONTROLLER 

The controller design, analysis and simulation of the higher dimensional plants are challenging works. 

As the order of the plant is increased, the complexity and controller design cost are proportionally 

increased [7], [8]. This problem can be compensated if a “good” simplified order model is attainable for 

the complicated system and the controller is designed by applying the simplified system. For sensing the 

state variables, several sensors are required in the higher dimensional plant for the creation of feedback 

controllers. To avoid the use of many sensors, series controllers are desirable in the place of feedback 

controllers. 

For obtaining the desirable behavior of a dynamic system, a reference plant (𝑀(𝑠)) is constructed based 

on the given specifications and the closed loop performance of the controlled plant with unity feedback 

is equivalent to the behavior of the reference plant. In [77]–[79], the procedures for finding the reference 

system from the specified data are discussed. Consider a controller, that gives the anticipated closed loop 

response and defined by the following transfer function as [80], [81] 

𝐺𝑐(𝑠) =
𝐾(1+𝐾1𝑠)

𝑠(1+𝐾2𝑠)
      (26) 

For the controller designed by applying lower dimensional plant, an open loop reference model (�̃�(𝑠)) 

is required and it can be achieved from the closed loop reference model (𝑀(𝑠)) as 

�̃�(𝑠) =
𝑀(𝑠)

1−𝑀(𝑠)
                (27) 

The behaviour of the open loop-controlled system is assumed to be similar to the behaviour of the open 

loop reference model. Hence, the unknown parameters of the controller are computed as 

𝐺𝑐(𝑠)𝐺𝑝(𝑠) = �̃�(𝑠)                 (28) 

𝐺𝑐(𝑠) =
�̃�(𝑠)

𝐺𝑝(𝑠)
=

∑ 𝑒𝑖𝑠𝑖2
𝑖=0

𝑠
                  (29) 

where 𝑒𝑖 (𝑖 = 0, 1, 2) are the power series coefficients about 𝑠 = 0, and the moment generating method 

given in [33] is used for the determination of these coefficients. And  𝐺𝑝(𝑠) is the transfer function of the 

higher dimensional plants. The mathematical computation and simulation time of the controller designed 
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for the higher order systems can be reduced by replacing the actual plant 𝐺𝑝(𝑠) with an equivalent 

reduced model in the Equation (27). The unknown constants of the controller are determined by equating 

the Equations (25) and (28) as 

𝐾(1+𝐾1𝑠)

𝑠(1+𝐾2𝑠)
=

𝑒0+𝑒1𝑠+𝑒2𝑠2

𝑠
       (30) 

The Padé type approximations of the controller having the anticipated configuration are attained by 

solving Equation (29). After determining the controller constants, the closed loop model of the higher 

dimensional plant is determined as 

𝐺𝑐𝑙(𝑠) =
𝐺𝑐(𝑠)𝐺𝑝(𝑠)

1+𝐺𝑐(𝑠)𝐺𝑝(𝑠)
       (31) 

 

5. ILLUSTRATIVE EXAMPLES 

The performance of the proposed method is compared with the other existing reduction schemes by 

computing the different performance error indices such as ISE, RISE, IAE and ITAE. The performance 

error indices given in [61], [63], [82], [83] are computed between the transient parts of the actual plant 

and the lower dimensional plants and described as 

ISE = ∫ [𝑦(𝑡) − 𝑦𝑟(𝑡)]2𝑑𝑡              
∞

0
                    (32) 

RISE = ∫ [𝑦(𝑡) − 𝑦𝑟(𝑡)]2𝑑𝑡
∞

0
/ ∫ [�̂�(𝑡)]2𝑑𝑡

∞

0
          (33) 

IAE = ∫ |𝑦(𝑡) − 𝑦𝑟(𝑡)|𝑑𝑡               
∞

0
                    (34) 

ITAE = ∫ 𝑡|𝑦(𝑡) − 𝑦𝑟(𝑡)|𝑑𝑡              
∞

0
                  (35) 

 

where 𝑦(𝑡) and 𝑦𝑟(𝑡) are the time responses of the large-scale plant and the lower order model 

respectively. The impulse response of the original model is  �̂�(𝑡). The performance error indices are 

computed for the various lower dimensional systems determined by the proposed algorithm and some 

other standard system diminution schemes given in the literature. The less value of the error indices for 

the reduced model indicates that the reduced model is a better approximant of the original system. 

Example 1: Let us assume a ninth-order standard plant  discuss by many researchers [63], [84]–[87] 

 

𝐺(𝑠) =
𝑠4+35𝑠3+291𝑠2+1093𝑠+1700

𝑠9+9𝑠8+66𝑠7+294𝑠6+1029𝑠5+2541𝑠4+4684𝑠3+5856𝑠2+4620𝑠+1700
    (36) 

 

The denominator equation of the given plant is written as 

𝐷(𝑠) = 𝑠9+9𝑠8 + 66𝑠7 + 294𝑠6 + 1029𝑠5 + 2541𝑠4 + 4684𝑠3 + 5856𝑠2 + 4620𝑠 + 1700  (37) 

 

Poles: −1, −1 − 1𝑗, −1 + 1𝑗, −1 − 2𝑗, −1 + 2𝑗, 

−1 − 3𝑗, −1 + 3𝑗, −1 − 4𝑗, −1 + 4𝑗. 

This system has one real pole; it will be retained in the reduced model. For the third order computed 

plant, the complex poles are grouped into one cluster and cluster center is obtained by using Equations 

(17)-(19) as 

𝐴𝑧 ± 𝑗𝐵𝑧 = − {([
1

1𝑋] + [
1

1𝑋] + [
1

1𝑋] + [
1

1𝑋]) 4⁄ }
−(1 𝑋⁄ )

± {([
1

1𝑋] + [
1

2𝑋] + [
1

3𝑋] + [
1

4𝑋]) 4⁄ }
−(1 𝑋⁄ )

  (38) 

By applying the cluster centers, the denominator polynomial of the lower dimensional plant is attained 

as 
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𝐷3(𝑠) = (𝑠 + 1)(𝑠 + 𝐴𝑧 ± 𝑗𝐵𝑧)              (39) 

Taking numerous values of 𝑋, the various denominator equations of the reduced model will be attained. 

The numerator coefficients are calculated by applying the Time moment matching method as explained 

in Section 3.2. The lower dimensional plant attained by the proposed method with 𝑋 =  5, is 

𝑅3(𝑠) =
−0.3614𝑠2−0.9193𝑠+2.7164

𝑠3+3𝑠2+4.7164𝑠+2.7164
                  (40) 

In Figure 1, the step responses of the higher order plant and lower dimensional plants determined by the 

proposed algorithm as well as some existing processes are compared. It is plainly noticed that the lower 

order plant attained by the given algorithm offers an exact approximation to the higher dimensional 

plant. In Table 1, the performance error indices of the various reduction methods are shown. It is found 

that the performance error indices of the given scheme are having the lowest indices as equated to some 

classical techniques [34], [35], [48], [66], [67], recently proposed methods [3], [83], [88], [89] and 

optimization methods [58], [84]. Table 2 also showing the efficiency and usefulness of the presented 

scheme to the other popular reduced order modeling algorithms present in the literature. Therefore, 

according to the graphical representation and error indices table, the proposed technique is the best 

suited to obtain the reduced order approximation of the large-scale systems. 

 

Table 1. Comparison of performance error indices of the proposed method with some other 

existing system diminution techniques 

Reduction method Lower order system ISE RISE IAE ITA

E 

Hankel norm approx. technique 

[67] 

0.5263𝑠2 − 1.286𝑠 + 2.825

𝑠3 + 2.039𝑠2 + 4.402𝑠 + 2.521
 

13 2.9465 116.

81 

6027

.1 

Padé approximation and 

differentiation technique [88] 

2.933𝑠2 + 33.05𝑠 + 102.8

3.372𝑠3 + 29.51𝑠2 + 93.14𝑠 + 102.8
 

9.2321 1.9621 14.8

94 

20.9

372 

Differentiation technique [90] 2.933𝑠2 + 33.05𝑠 + 102.8

3.372𝑠3 + 29.51𝑠2 + 93.14𝑠 + 102.8
 

9.2321 1.9621 14.8

94 

20.9

372 

Balanced truncation method [66], 

Schur decomposition method [89] 

0.1405𝑠2 − 0.8492𝑠 + 1.881

𝑠3 + 1.575𝑠2 + 3.523𝑠 + 1.717
 

8.5453 1.8161 90.2

95 

4777

.3 

Balanced truncation and factor 

division algorithm [55], improved 

balanced truncation method [91] 

1.674𝑠2 − 0.0393𝑠 + 1.717

𝑠3 + 1.575𝑠2 + 3.523𝑠 + 1.717
 

4.3331 0.9209 14.0

73 

36.9

938 

Routh Hurwitz method [34] 259.8𝑠2 + 864𝑠 + 1700

913.9𝑠3 + 1500𝑠2 + 3023𝑠 + 1700
 

3.9217 0.8335 10.8

64 

21.6

615 

Response matching technique [85] 0.2945𝑠2 − 2.202𝑠 + 2.32

𝑠3 + 2.501𝑠2 + 4.77𝑠 + 2.32
 

1.6057 0.3413 9.36

06 

28.6

362 

Routh Hurwitz and Padé approx.  

[46], [92], Routh Hurwitz and 

factor division algorithm [93], 

Improved Routh Hurwitz [83] 

−751.695𝑠2 − 504𝑠 + 1700

913.9𝑠3 + 1500𝑠2 + 3023𝑠 + 1700
 

1.4852 0.3156 8.84

86 

26.2

855 

Truncation methodology [94] 291𝑠2 + 1093𝑠 + 1700

4684𝑠3 + 5856𝑠2 + 4620𝑠 + 1700
 

0.7825 0.1663 7.56

42 

35.2

89 
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Mihailov stability and Padé 

approximation method  [48] 

335.3018𝑠2 + 674𝑠 + 1700

3099𝑠2𝑠3 + 5031𝑠2 + 4201𝑠 + 1700
 

0.7078 0.1504 6.47

04 

24.2

28 

Mihailov stability and improved 

Padé approximation method  [3] 

674𝑠 + 1700

3099𝑠2𝑠3 + 5031𝑠2 + 4201𝑠 + 1700
 

0.6032 0.1282 6.09

96 

25.4

11 

Stability equation [35] 285𝑠2 + 1093𝑠 + 1700

3048𝑠3 + 5031𝑠2 + 4620𝑠 + 1700
 

0.581 0.1235 4.98

45 

13.6

41 

Stability equation and big bang 

big crunch method [84] 

0.0789𝑠2 + 0.3142𝑠 + 0.493

𝑠3 + 1.3𝑠2 + 1.34𝑠 + 0.493
 

0.4732 0.1006 4.94

34 

17.1

018 

Modified balanced truncation 

method [95] 

0.1405𝑠2 − 0.8492𝑠 + 1.717

𝑠3 + 1.575𝑠2 + 3.523𝑠 + 1.717
 

0.385 0.818 4.77

21 

20.2

788 

Pole clustering and Padé approx. 

method [57], Proposed technique 

(𝑿 = 𝟏) 

0.21𝑠2 − 3.0365𝑠 + 4.6864

𝑠3 + 3𝑠2 + 6.6864𝑠 + 4.6864
 

0.3281 0.0697 3.32

75 

7.04

60 

Modified pole clustering method 

and  Genetic Algorithm [58] 

−0.264𝑠2 + 0.483𝑠 + 0.751

𝑠3 + 2.195𝑠2 + 2.046𝑠 + 0.751
 

0.2916 0.0620 3.57

88 

10.5

086 

Routh-Padé approximations [50], 

Routh approximation and factor 

division [1], improved Routh 

approximation [53] 

−0.264𝑠2 + 0.4822𝑠 + 0.7501

𝑠3 + 2.1913𝑠2 + 2.0384𝑠 + 0.7501
 

0.2886 0.0613 3.58

57 

10.6

276 

Modified pole clustering method 

and  Padé approx. [96], modified 

pole clustering and factor division 

method [64], improved pole 

clustering method [59] 

−0.2739𝑠2 + 0.4879𝑠 + 0.751

𝑠3 + 2.195𝑠2 + 2.046𝑠 + 0.751
 

0.2836 0.0603 3.55

16 

10.4

551 

Stability equation and Padé 

approximation [47], stability 

equation and factor division 

method [52] 

285𝑠2 + 1093𝑠 + 1700

3048𝑠3 + 5031𝑠2 + 4620𝑠 + 1700
 

0.2672 0.0568 3.87

68 

14.5

13 

Proposed technique (𝑿 = 𝟑) −0.2039𝑠2 − 1.5031𝑠 + 3.2596

𝑠3 + 3𝑠2 + 5.2596𝑠 + 3.2596
 

0.1639 0.0360 2.31

43 

4.53

0 

Proposed technique (𝑿 = 𝟓) −0.3614𝑠2 − 0.9193𝑠 + 2.7164

𝑠3 + 3𝑠2 + 4.7164𝑠 + 2.7164
 

0.1639 0.0348 2.21

37 

4.01

55 
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Figure 1. Comparison of step response for full and lower order plants 

 

Example 2: Consider a sixth-order multivariable plant [2], [56], [64], [97] with two-inputs and two-

outputs illustrated by the following transfer matrix as 

[𝐺𝑝(𝑠)] = [

2(𝑠+5)

(𝑠+1)(𝑠+10)

(𝑠+4)

(𝑠+2)(𝑠+5)

(𝑠+10)

(𝑠+1)(𝑠+20)

(𝑠+6)

(𝑠+2)(𝑠+3)

]                        (41) 

=
1

𝐷(𝑠)
[
𝐴11(𝑠) 𝐴12(𝑠)
𝐴21(𝑠) 𝐴22(𝑠)

] 

where, 

𝐷(𝑠) = (𝑠 + 1)(𝑠 + 2)(𝑠 + 3)(𝑠 + 5)(𝑠 + 10)(𝑠 + 20) 

= 𝑠6 + 41𝑠5 + 571𝑠4 + 3491𝑠3 + 10060𝑠2 

+13100𝑠 + 6000 

and 

𝐴11(𝑠) = 2𝑠5 + 70𝑠4 + 762𝑠3 + 3610𝑠2 + 7700𝑠 + 6000 

𝐴12(𝑠) = 𝑠5 + 38𝑠4 + 459𝑠3 + 2182𝑠2 + 4160𝑠 + 2400 

𝐴21(𝑠) = 𝑠5 + 30𝑠4 + 331𝑠3 + 1650𝑠2 + 3700𝑠 + 3000 

𝐴22(𝑠) = 𝑠5 + 42𝑠4 + 601𝑠3 + 3660𝑠2 + 9100𝑠 + 6000 

For achieving the denominator polynomial of the second order reduced plant, the two clusters are made. 
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Cluster-1  ∶   −1, − 3, − 10 

Cluster-2  :   −2, − 5, −20. 

The centers of these clusters are determined by applying (12)-(14). The characteristic equation of the 

proposed simplified model is attained as 

𝐷2(𝑠) = (𝑠 − 𝑐1𝑝)(𝑠 − 𝑐2𝑝)                (42) 

For the different values of 𝑋, the various denominator equations of the lower dimensional plant will be 

attained. The numerator coefficients are evaluated by using the Time moment matching method as 

described in Section 3.2. The lower dimensional system determined by the proposed scheme with 𝑋 =

 50 is 

[𝑅2(𝑠)] =
[
1.1858𝑠+2.0898 0.8505𝑠+0.8359
0.5406𝑠+1.0449 1.6734𝑠+2.0898

]

𝑠2+3.0666𝑠+2.0898
              (43) 

 

Table 2: Comparison of various system reduction schemes in terms of ISE 

Reduction 

technique 

Reduced model 𝒓𝟏𝟏(𝒔) 𝒓𝟏𝟐(𝒔) 𝒓𝟐𝟏(𝒔) 𝒓𝟐𝟐(𝒔) 

Parmar 

Mukherjee 

and  Prasad 

[51] 

[
6.0429𝑠 + 8.4707 3.9419𝑠 + 3.3883
2.8097𝑠 + 4.2354 8.0195𝑠 + 8.4707

]

𝑠2 + 13.6666𝑠 + 8.4707
 

0.225 0.0682 0.0613 0.6780 

Sikander and 

Prasad [52] 
[
0.7938𝑠 + 0.6181 0.4273𝑠 + 0.2472
0.37952𝑠 + 0.309 0.93382𝑠 + 0.6181

]

𝑠2 + 1.34952𝑠 + 0.6181
 

0.1672 0.0958 0.0312 0.2004 

Narwal and 

Prasad [97] 
[
0.8930𝑠 + 0.6181 0.4517𝑠 + 0.2472
0.4314𝑠 + 0.3091 1.0579𝑠 + 0.6181

]

𝑠2 + 1.34952𝑠 + 0.6181
 

0.1615 0.0897 0.0296 251.3574 

Parmar, 

Prasad and 

Mukherjee 

[98] 

[
0.8503𝑠 + 0.6171 0.4617𝑠 + 0.2466
0.4093𝑠 + 0.3086 0.9977𝑠 + 0.6171

]

𝑠2 + 1.34952𝑠 + 0.6181
 

0.1471 0.0884 0.0258 0.1598 

Prajapati and 

Prasad [53] 
[
0.9098𝑠 + 0.7091 0.4916𝑠 + 0.2836
0.4373𝑠 + 0.3545 1.0753𝑠 + 0.7091

]

𝑠2 + 1.548𝑠 + 0.7091
 

0.0765 0.0595 0.0115 0.0808 

Proposed 

method (𝑿 =

𝟏𝟎) 

[
1.106𝑠 + 2.4914 0.8909𝑠 + 0.9966

0.4907𝑠 + 1.2457 1.6874𝑠 + 2.4914
]

𝑠2 + 3.3483𝑠 + 2.4914
 

0.0157 0.0003 0.0024 0.0381 

Vishwakarma 

and Prasad 

[58] 

[
1.1816𝑠 + 3.6508 1.0466𝑠 + 1.4603
0.4982𝑠 + 1.8254 1.6911𝑠 + 3.6508

]

𝑠2 + 4.3374𝑠 + 3.6508
 

0.0151 0.0078 0.0030 0.0469 

Narwal and 

Prasad [61] 
[
1.3276𝑠 + 3.0962 1.0447𝑠 + 1.2444
0.6116𝑠 + 1.5480 1.7815𝑠 + 3.0960

]

𝑠2 + 4.0965𝑠 + 3.0965
 

0.0093 0.0040 0.0008 247.8492 

Proposed 

method  (𝑿 =

𝟓𝟎) 

[
1.1858𝑠 + 2.0898 0.8505𝑠 + 0.8359
0.5406𝑠 + 1.0449 1.6734𝑠 + 2.0898

]

𝑠2 + 3.0666𝑠 + 2.0898
 

0.0089 0.0002 0.0008 0.0377 
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The time response comparison of the reduced order system obtained by the proposed method with the 

original system and the reduced model obtained by some other existing methods is shown in Figure 2. 

From this plot, the response of the proposed reduced model is completely matched with the response of 

the original system. For quantitative comparison, the proposed technique is also compared with other 

model reduction techniques in terms of ISE values as tabulated in Table 2. From Table 2, when 𝑋 is 10, 

ISE is not least error but if 𝑋 = 50 then the proposed method gives the least error when compared with 

some other existing schemes. So, all the performance parameters taken for the comparison are giving the 

best values for this method, which shows that the proposed method is best among the techniques 

discussed in the error indices table. 

 
Figure 2: Comparison of step responses of the higher order plant and lower dimensional plants for 

example 3

Example 3: Consider a sixth order transfer function of the helicopter engine including a fuel controller 

model discussed in [99] as 

𝐺(𝑠) =
248.05𝑠4+1483.3𝑠3+91931𝑠2+468730𝑠+634950

𝑠6+26.24𝑠5+1363.1𝑠4+26803𝑠3+326900𝑠2+859170𝑠+528050
                                      (44) 

The input of plant is speed demand and the output is propeller speed and the critically damped reference 

model given in [99] is 

https://www.ijfmr.com/
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𝑀(𝑠) =
4

𝑠2+4𝑠+4
                         (45) 

From the given reference model, the open loop reference model is determined as 

�̃�(𝑠) =
𝑀(𝑠)

1−𝑀(𝑠)
=

4

𝑠(𝑠+4)
                (46) 

The parameters of the controller determined by the actual system are as 

𝐺𝑐(𝑠) =
�̃�(𝑠)

𝐺(𝑠)
=

𝑒0 + 𝑒1𝑠 + 𝑒2𝑠2

𝑠
=

𝐾(1 + 𝐾1𝑠)

𝑠(1 + 𝐾2𝑠)
 

=
0.8316+0.5313𝑠−0.2841𝑠2

𝑠
                    (47) 

Hence, 

𝐾 = 0.8316, 𝐾1 = 1.1735, 𝐾2 = 0.5347      (48) 

The closed loop plant with compensator determined by the original plant is given as: 

𝑅𝑐𝑙(𝑠) =
𝐺(𝑠)𝐺𝑐(𝑠)

1+𝐺(𝑠)𝐺𝑐(𝑠)
                       (49) 

The lower dimensional model determined by the proposed technique with 𝑋 = 50 is given as follows 

𝑅2(𝑠) =
0.6357𝑠+1.48

𝑠2+3.042𝑠+2.056
                  (50) 

By using the proposed lower order plant of Equation (61), the compensator is attained as 

𝐺𝑐𝑟(𝑠) =
�̃�(𝑠)

𝑅𝑟(𝑠)
=

𝑒0 + 𝑒1𝑠 + 𝑒2𝑠2

𝑠
=

𝐾(1 + 𝐾1𝑠)

𝑠(1 + 𝐾2𝑠)
 

=
0.8316+0.5313𝑠−0.2841𝑠2

𝑠
               (51) 

Hence, 

𝐾 = 0.8316, 𝐾1 = 1.1735, 𝐾2 = 0.5347       (52) 

The closed loop transfer with compensator determined by the proposed reduced plant is obtained as: 

𝑅𝑐𝑙(𝑠) =
𝐺(𝑠)𝐺𝑐𝑟(𝑠)

1+𝐺(𝑠)𝐺𝑐𝑟(𝑠)
                (53) 

From Equations (59) and (63), it is obvious that the parameters of the compensator determined by using 

the actual plant are identical to the parameters of the compensator attained by the reduced model of 

Equation (61). But the design of a compensator from a higher order plant is tough work as compared to 

the compensator design from an equivalent lower order plant. Hence, the proposed reduced dimensional 

model can be applied for the design of the compensator in place of the higher dimensional plant. 

The comparison of time response of the closed loop actual plant with compensator is shown in Figure 3. 

The compensators are attained by using the higher and lower dimensional plants. The simulation result 

demonstrates that the proposed compensator performs well under both steady state and transient 

behavior. The time domain specifications of the closed loop plants with compensators are shown in 

Table 3. From this table, it can be observed that the specifications of the closed loop model with the 

compensator obtained by the approximant are similar as that of the closed loop plant with the 

compensator designed by the complex plant and these specifications are also matching with the 

reference plant specifications. Hence, the proposed technique can be applied for the compensator design 

for the fulfillment of the essential behavior of the real time plants. Overall, it can be summarized that the 

values of time domain specification mostly reduce which indicates the proposed method is highly 

preferable. 
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Figure 3: Comparison of time responses of closed loop plants and reference model 

 

Table 3: Comparison of closed loop plants in terms of time domain specifications 

Reduction 

scheme 

Reduced order plant Compensat

or 

(𝑲, 𝑲𝟏, 𝑲𝟐) 

Rise 

time 

Settlin

g time 

Peak 

oversho

ot 

Peak 

time 

--- Reference system --- 1.679 2.917 0.9991 4.690 

--- Original plant 0.8316, 

1.1735, 

0.5347 

1.762

8 

2.8107 1.0026 4.050

2 

Proposed 

technique 

(X=50) 

0.6357𝑠 + 1.48

𝑠2 + 3.042𝑠 + 2.056
 

0.8316, 

1.1735, 

0.5347 

1.762

8 

2.8107 1.0026 4.050

2 

Balanced 

truncation 

[66], Schur 

decompositi

on method 

[100] 

3.917𝑠2 + 122.7𝑠 + 1431

𝑠3 + 2.156𝑠2 + 1019𝑠 + 1234
 

0.8623, 

0.8715, 

0.3815 

1.799

6 

4.071 1.0202 4.067

3 

Stability 

equation 

method [35] 

9.0184𝑠2 + 46.873𝑠 + 63.495

2.593𝑠3 + 33.003𝑠2 + 85.917𝑠 + 52.805
 

0.8316, 

1.16, 

0.5211 

1.770

6 

2.8223 1.0026 4.249

3 

Stability 

equation and 

9.5695𝑠2 + 46.873𝑠 + 63.495

2.593𝑠3 + 33.003𝑠2 + 85.917𝑠 + 52.805
 

0.8316, 

1.1735, 

1.762

8 

2.8107 1.0026 4.050

2 
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factor 

division 

[52], 

Stability 

equation and 

Padé 

approximati

on [47] 

0.5347 

Routh 

approximati

on [101] 

4.6367𝑠2 + 20.3172𝑠 + 27.522

𝑠3 + 14.0706𝑠2 + 37.2422𝑠 + 22.889
 
0.8317, 

1.2174, 

0.5786 

1.732

9 

2.6802 1.0030 3.865

0  

Improved 

Routh 

approximati

on [53] 

3.8651𝑠2 + 20.3182𝑠 + 27.5227

𝑠3 + 14.0706𝑠2 + 37.2422𝑠 + 22.889
 
0.8316, 

1.1735, 

0.5347 

1.762

8 

2.8106 1.0026 4.050

2  

Differentiati

on method 

[90] 

18.39𝑠2 + 281.2𝑠 + 761.9

1.6082𝑠3 + 78.46𝑠2 + 515.5𝑠 + 633.7
 
0.8317, 

0.7754, 

0.581 

1.793

1 

5.6076 1.0674 3.667

9 

Differentiati

on and Padé 

approximati

on [88] 

283.98𝑠2 − 57.431𝑠 + 761.9

1.6082𝑠3 + 78.46𝑠2 + 515.5𝑠 + 633.7
 
0.8316, 

1.1735, 

0.581 

1.762

8 

2.8107 1.0026 4.050

3 

Padé 

approximati

on [33] 

3.48𝑠2 + 18.52𝑠 + 27.37

𝑠3 + 12.44𝑠2 + 35.64𝑠 + 22.76
 

0.8316, 

1.1744, 

0.5352 

1.762

1 

2.8112 1.0026 4.055

8 

Balanced 

realization 

and factor 

division 

method [55] 

3.917𝑠2 + 122.7𝑠 + 1431

𝑠3 + 2.156𝑠2 + 1019𝑠 + 1234
 

0.8316, 

1.1735, 

0.5347 

1.762

8 

2.8106 1.0026 4.050

2 

Routh 

Hurwitz 

technique 

[34] 

13.55𝑠2 + 399.20𝑠 + 634.95

4.21𝑠3 + 227.73𝑠2 + 818.61𝑠 + 528.05
 

0.8316, 

1.1739, 

0.5023 

1.778

3 

2.9819 1.0001 4.836

3 

Routh 

Hurwitz and 

factor 

division [93] 

16.035𝑠2 + 419.96𝑠 + 634.95

4.21𝑠3 + 227.73𝑠2 + 818.61𝑠 + 528.05
 

0.8316, 

1.1735, 

0.5347 

1.762

8 

2.8106 1.0026 4.050

2 

Modified 

balanced 

truncation 

[95] 

3.917𝑠2 + 122.7𝑠 + 1480.8

𝑠3 + 2.156𝑠2 + 1019𝑠 + 1234
 

0.8316, 

0.8695, 

0.3764 

1.847

3 

2.8117 1.0185 4.048

1 
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Hankel norm 

method [67] 

4.498𝑠2 + 119.4𝑠 + 1845

𝑠3 + 2.527𝑠2 + 1018𝑠 + 1608
 

0.8715, 

0.6866, 

0.3683 

1.781

4 

5.2981 1.0452 3.666

4 

 

6. CONCLUSION 

This paper proposed a technique for the reduction of complexity of linear dynamical systems, based on 

the Time moment matching method and generalized pole clustering technique. This algorithm 

guarantees the retention of stability, dominant poles and first few time moments of the complete order 

plant in the lower order plant. It is shown in Figures 1-2 that the proposed model reduction approach 

produces reduced models that accurately approximate the static and dynamic behavior of the higher 

dimensional plant. Tables 1-2 indicate that the proposed method produced the reduced models which 

give the least error indices and comparable to the other existing popular and recently proposed model 

reduction methods. Furthermore, the computed reduced order plant is used for the design of the 

controller by using the simple moment matching algorithm.  This controller is used for the controlling of 

the original system. From Table 3, the controller designed by applying the lower dimensional plant is 

giving approximately the same time domain specification as the controller designed by the original 

system. The proposed method can also be extended for the design of the controller for the multi-variable 

high dimensional systems. 

 

Data Availability 

All data generated or analysed during this study are included in this article. 
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