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Abstract: 

Intuitionistic Fuzzy Set which extends classical fuzzy sets by incorporating both membership and non-

membership degrees along with hesitation, provide a richer way to model uncertainty. This paper 

introduces an innovative framework for intelligent E-learning recommendation systems by integrating 

intuitionistic fuzzy sets (IFS), Euclidean distance metrics, and pattern recognition techniques. The 

proposed model effectively captures both learner’s confidence (membership) and hesitation (non-

membership) levels, providing detailed representations of individual learning profiles. The minimal 

Euclidean distance identifies the most similar student profiles enabling precise personalized 

recommendations and data driven instructional decisions. 
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1. Introduction: 

Fuzzy sets were introduced independently by Lotfi A. Zadeh in 1965, a professor of Electrical engineering 

and computer science at the University of California, Berkeley, published the seminar paper “Fuzzy sets.” 

In this paper he introduced the concept of fuzzy sets as an extension of classical set theory, where elements 

have degrees of membership ranging from 0 to1. In the late 1970’s Zadeh [15] further developed fuzzy 

logic and fuzzy relations leading to Fuzzy logic systems (FLS) that aimed to mimic human reasoning. This 

system made use of IF-THEN rules and could handle vague concepts effectively. Notably in 1980’s 

Japanese companies began to adopt fuzzy logic in products like Air conditioners, washing machines and 

Cameras highlighting its capabilities in real world applications. How ever in reality, it may not always be 

true that the  degree of non-membership of an element in a fuzzy set is equal to 1minus the membership 

degree because there may be some hesitation degree .This leads Atanassov [1] in1983 to define a new type 

of Fuzzy set called Intuitionistic Fuzzy Set (IFS) which consider the parameters a degree of membership 

and non- membership of all elements of the set and also a degree of hesitation or uncertainty associated 

with each element Thus an Intuitionistic Fuzzy Set (IFS) helps to represent this uncertainity through three 

components as follows membership function, non-membership function and hesitation margin µA (x), γA 

(x) and πA(x) respectively. IFS have been effectively applied to model hesitation in multi-criteria decision-
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making processes by Atanassov [3] 1999, pattern recognition (Atanssov 2012),Control systems (Bustince 

et al. 2013) , Medical diagnosis (Deschrijver and Kerri 2003), Classification and Clustering (Bustince et 

al 2013) So it  is clear to say that IFS is the best tool to solve the real life problems .In this paper we use 

Intuitionistic Fuzzy sets and   the normalized Euclidean distance [14],  method to calculate the distance 

specifically  between each student profile and Module profile. E learning has transformed modern 

education by enabling flexible, student-centered learning experiences beyond the limitations of traditional 

classrooms. The unprecedented shift to online education during the COVID- 19 pandemic underscored 

the urgent need for intelligent, adaptive systems that can personalize learning pathways to match each 

student’s unique abilities and needs. As a result of small Euclidean distance indicates a strong match 

between the student’s profile and the module’s requirements. Therefore, the system should prioritize 

recommending this module, as it is likely to significantly enhance learning outcomes. 

 

2. Fundamentals of Fuzzy sets: 

Definition 2.1 [5]: A set is a well-defined collection of distinct objects, considered as s single entity. The 

objects in a set are called Elements or members, and a set is usually denoted by capital letters. 

Example 2.1.1: 

The set of mathematics topics studied in high school 

A= {Algebra, Calculus, Geometry, Statistics, Trigonometry} 

Definition 2.2 [15]: 

Let X be a non - empty set. A Fuzzy set ‘A’ drawn from X is defined as 

A= {⟨x, µA (x) ⟩: x∈X} where µA (x):X → [0,1] is the membership function of the fuzzy set ‘A’. 

Example 2.1.2: 

For the purpose of measuring student confidence level in an E-learning consider, the student’s confidence 

scores be X= {1,2,3,4,5} 

Confident learners= {(1,0.0), (2,0.2), (3,0.5), (4,0.8), (5,1.0)} 

In this fuzzy set rating themselves at level 3 has a membership degree of 0.5, indicates Moderate 

confidence. 

A rating of 5 corresponds to a membership degree of 1.0, indicates the student is Fully confident with no 

uncertainty. 

Lower scores like 1 have a membership degree of 0.0 (µ= 0), indicates No confidence. 

Definition 2.3 [2]: 

Let X be a non – empty set. An intuitionistic fuzzy set A in X is an object having the form A= {⟨x, µA (x), 

γA(x) ⟩: X → [0,1]} which defines respectively the degree of membership and non- membership of the 

element x∈ X to the set A, which is the subset of X, for every element x∈X, 0≤ µA (x)+ γ A(x)≤1. From 

fuzzy set theory, if the membership degree of an element x is µ(x), if the non -membership degree of an 

element x is 1- µ(x) 

πA(x)=1- µA (x)- γA(x) is called the intuitionistic fuzzy set index or hesitation margin of x in A. πA(x) is 

degree of indeterminacy (uncertain or hesitant) of x ∈X to the intuitionistic fuzzy set A and πA(x) ∈ [0,1] 

It means πA(x):X → [0,1], x∈X where πA(x) expresses the lack of knowledge of whether x belongs to 

intuitionistic fuzzy set A or not. 

Example 2.1.3: 

Consider the set of possible student learning activity levels in the E-learning platform X= {1,2,3,4,5} 

For each activity level we find membership (µ), non-membership (γ) and hesitation (π) as follows: 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR250451948 Volume 7, Issue 4, July-August 2025 3 

 

Activity level membership (µ) non-membership ( 𝛾) hesitation (π) 

π=1-µ- γ 

1(low level) 0.0 0.9 0.1 

2 0.2 0.7 0.1 

3 0.5 0.4 0.1 

4 0.8 0.1 0.1 

5(very high) 1.0 0.0 0.0 

Active students= {(1,0.0,0.9), (2,0.2,0.7), (3,0.5,0.4), (4,0.8,0.1), (5,1.0,0.0)} 

This approach allows us to capture not only how active (membership) or inactive 

Students (non- membership) but also the uncertainty(hesitation) about their participation. 

Definition 2.4 [10]: 

An L-fuzzy subset A of G is said to be an intuitionistic L-fuzzy sub Ɩ-group (ILFS Ɩ G) of G if for any x, 

y ∈G 

i) µA(xy-1) ≥ µA(xy), γA(xy-1) ≤  γA(xy), 

ii) µA (x v y) ≥ µA(x) ∧ µA (y), γA (x ∧ y) ≤ γA (x) ∨ γA (y), 

iii) µA (x ∧ y) ≥ µA(x) ∧ µA (y), γA (x v y) ≤ γA (x) v γA (y) ∀ x, y ∈G 

Definition 2.5 [9]: 

A fuzzy subset A of G is said to be a anti fuzzy group of G, if for all x, y ∈G 

i) A(xy) ≤ max{A(x), A(y)} 

ii) A (x-1) = A(x) 

 

3. Basic Relations and operations on intuitionistic fuzzy sets: 

1. A ⊆ B↔ µA (x)≤ µB (x) and γA(x)≥ γB(x) ∀x∈ X-Inclusion 

2. A = B↔ µA (x) = µB (x) and γA (x)= γB (x) ∀x∈ X-Equality 

3. Ac
= {⟨x, γA (x), µA(x) ⟩: x∈ X}-Complement 

4. A ∪ B= {⟨x, max (µA (x), µB (x)), min (γA (x), γB (x)) ⟩: x∈ X}- Union 

5. A ∩ B= {⟨x, min (µA (x), µB (x)), max (γA (x), γB (x)) ⟩: x∈ X}- Intersection 

6. A ⊕ B = {⟨x, µA (x) + µB (x)- µA (x) µB (x), γA (x) γB (x) ⟩: x∈ X}-Addition 

7. A ⊗ B= {⟨x, µA (x) µB (x), γA (x) γB (x)- γA (x) γB (x) ⟩: x∈ X}-Multiplication 

8. A - B= {⟨x, min (µA (x), γB (x)), max (γA (x), µB (x)) ⟩: x∈ X}-Difference 

9. A ∆ B= {⟨x, max [min (µA (x), γB (x), min (µB (x), γA (x)], min [max (γA (x), µB (x), max (𝛾B (x), µA 

(x)] ⟩: x∈ X}-Symmetric difference 

10. A× B= {⟨ µA (x) µB (x), γA (x) γB (x) ⟩: x∈ X}-Cartesian product 

 

From the basic operations, we deduced the following relations: 

1. A × B = B × A 

2. (A × B) × C =A × (B × C) 

3. A × (B ∪ C) = (A × B) ∪ (A × C) 

4. A × (B ∩ C) = (A × B) ∩ (A × C) 

5. A× (B ⊕ C) = (A × B) ⊕ (A× C) 

6. A × (B ⊗ C) = (A× B) ⊗ (A× C) 
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Algebra laws in intuitionistic fuzzy sets: 

Let A, B and C are intuitionistic fuzzy sets in X, then, 

1. (Ac)c
= A- Complementary Law 

2. (i) A ∪ A = A (ii) A ∩ A= A- Idempotent Laws 

3. (i) A ∪ B= B ∪ A (ii) A ∩ B = B ∩ A  

(iii) A ⊕ B = B ⊕ A 

(iv) A⊗B = B ⊗ A - Commutative Laws 

4.(A U B) U C= A U (B U C) (ii) A ∩ B) ∩ C) = A ∩ (B ∩ C) 

(iii) A ⊕ (B⊕ C) = (A⊕ B) ⊕ C 

(iv) A⊗ (B⊗ C) = (A ⊗B) ⊗ C – Associative laws 

5. (i) AU (B∩C) = (A U B) ∩ (A UC) (ii) A ∩ (B U C) = (A ∩B) U (A∩ C) 

(iii) A⊕ (B U C) = (A⊕ B) U (A ⊕ C) (iv) A ⊕ (B ∩ C) = (A⊕ B) ∩ (A ⊕ C) 

(v) A ⊗ (B U C) = (A ⊗ B) U (A⊗ C) 

(vi) A ⊗ (B ∩ C) = (A ⊗ B) ∩ (A⊗ C)- Distributive Laws 

6. (i) (A U B) c = A c ∩ B c (ii) (A ∩ B) c = A c U B c 

(iii) (A⊕ B) c = A c ⊗ B c (iv) (A ⊗ B) c = A c ⊕ B c –De Morgan’s Laws 

7. (i) A ∩ (AUB) = A (ii) A U (A∩ B) = A 

8.(i) Ⴔ c =X ii) X c = Ⴔ (iii) A U Ⴔ= A (iv) A ∩ Ⴔ= Ⴔ v) A ∩ A c = Ⴔ 

9) (i) AU X=X (ii) AUA c =X (iii) A ∩ X=A- Absorption Laws 

 

4.Theoretical Foundation for Intuitionistic Fuzzy Set Operations: 

In our proposed E-learning framework, we model student knowledge and learning objectives as IFS. To 

ensure rigorous analysis and manipulation of these sets, we adopt fundamental theorems established in the 

literature on IFS. 

Theorem 1: 

Let A and B be two Intuitionistic fuzzy sets defined on a non-empty universe X. 

Then X= AU (A ∩ Bc) then X=A 

Proof: 

Let A= {⟨x, µA (x), γA(x) ⟩: x ∈ X} and B= {⟨x, µB (x), γB (x) ⟩: x ∈ X} then 

B c = {⟨ x, γB (x), µB (x) ⟩: x ∈ X} then A ∩ B c = {⟨x, min (µA (x), γB (x)), max (γA (x), γB (x))⟩: x ∈ X} 

Then for each x ∈ X: 

For membership-function: 

µX(x)= max (µA (x), min (µA (x), γB (x))) 

Let a= µA (x), b= γB (x) Then 

Max (a, min (a, b)) = a [ because min (a, b) ≤ a] 

µA (x), b= γB (x) 

µX(x)= µA(x) 

For Non membership function: 

γX (x)= min (γA(x), max (γA(x), µB (x))) 

Let a= γA (x), b= µB (x) 

Then, min (a, max (a, b)) = a [ because max (a, b) ≥ a] 

γX (x)= γA (x) 

Hence for every x ∈ X, X= ⟨x, µX(x), γX (x) ⟩ = ⟨x, µA(x), γA (x) ⟩ →X= A 
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Theorem 2: 

Let A and B be two Intuitionistic fuzzy sets defined on a non-empty universe X. 

Then (Ac U B c) = (A ∩ B) c 

Proof: 

Let A= {⟨x, µA (x), γA(x) ⟩: x ∈ X} and B= {⟨x, µB (x), γB (x) ⟩: x ∈ X} 

AUB= {⟨ x, max (µA(x), µB (x)), min (γA(x), γB(x))} 

A∩B= {⟨x, min ((µA(x), µB (x)), max (γA(x), γB(x))} 

µA
c
U B(x)= max (γA(x), µB(x)) 

γA
c
U B (x)= min (µA(x), γB(x)) 

(Ac U B) c = {⟨x, min ((µA(x), γB(x)), max((γA(x), µB(x))} 

µA ∩ B
c (x)= min ((µA(x), γB (x)) 

γ A ∩B 
c(x)= max (γA(x), µB(x)) 

It is clear that (Ac U B c) = (A ∩ B) c for all x ∈ X 

Theorem 3: Let A and B be two Intuitionistic fuzzy sets defined on a non-empty set X. 

Then A ∩ (Bc U Ac) = A - B 

Proof: 

Let A= {⟨x, µA (x), γA(x) ⟩: x ∈ X} and B= {⟨x, µB (x), γB (x) ⟩: x ∈ X} 

µ B
c 

U A
c(x)= max (γB(x), γA(x)) 

γB
c 

U A
c(x)= min(µB(x), µA(x)) 

Now intersect with A 

µLHS(x)= min (µA(x), max (γB(x), γA(x)) 

γLHS(x)= max (γA(x), min(µB(x), µA(x)) 

µRHS(x)= min(µA(x), γB(x)) 

γRHS(x)=max (γA(x), µB(x)) 

min (µA(x), max(γB(x), γA(x))) = min (µA(x), γB(x)) 

Similarly, max(γA(x), min (µB(x), µA(x))) = max(γA(x), µB(x)) 

Because if µB(x) ≥ γ A(x) then min(µB(x), µA(x)) ≤ µB(x) 

Thus, max(γA(x), min(µB(x), (µA(x))) = max(γA(x), µB(x)) 

Since both the membership and non- membership functions of LHS and RHS are equal for all 

x ∈X. We conclude A ∩ (Bc U Ac) = A- B 

Theorem 4: 

Let A and B be two Intuitionistic fuzzy sets defined on a non-empty set X. 

Then Ac ∩ (A U B) = Ac ∩ B 

Proof: 

Let A= {⟨x, µA (x), γA(x) ⟩: x ∈ X} and B= {⟨x, µB (x), γB (x) ⟩: x ∈ X} then 

Ac= {⟨x, γA(x), µA(x) ⟩: x ∈ X} 

AUB= {⟨x, max(µA(x), µB(x)), min(γA(x), γγB(x))} 

µLHS(x)= min (γA(x), max(µA(x), µB(x))) 

µRHS(x)= min (γA(x), µB(x)) 

min(γA(x), max (µA(x), µB(x)) = min(γA(x), µB(x)) 

If µA(x)≤ µB(x) then max(µA(x), µB(x)) = µB(x) 

⇒ min(γA(x), µB(x)) = min (γA(x), max (µA(x), µB(x)) 

max(µA(x), min(γA(x), γB(x)) = max(µA(x), γB(x))} 
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If µA(x) ≤   µB(x) and µA(x) ≤ γB(x) then Ac ∩ (A U B) = Ac ∩ B 

Theorem 5: 

Let A and B be two Intuitionistic fuzzy sets defined on a non-empty universe X. 

Then A ∆ B= if and only if A= B 

Proof: 

Let A= {⟨x, µA (x), γA(x) ⟩: x ∈ X} and B= {⟨x, µB (x), γB (x) ⟩: x ∈ X} then 

A ∆ B= (A - B) U (B - A) 

A - B= {⟨x, min (µA (x), γA(x)), max(γA(x), µB(x) ⟩: x ∈ X} 

Suppose A ∆ B= Ⴔ ⇒A - B= Ⴔ and B - A= Ⴔ 

min (µA (x), γB (x)) = 0 and min (µB (x), γA (x)) = 0 

⇒ µA (x)= µB (x) and γA (x)= γB (x) for all x ∈ X 

Hence A=B 

Conversely, 

Suppose A=B then µA (x)= µB (x) and γA (x)= γB (x) for all x ∈ X 

⇒ A-B= {⟨x, min (µA (x), γB(x), max(γA(x), µB(x) ⟩} 

= {⟨x, min (µA (x), γA (x), max (γA (x), µA (x)) ⟩} 

By the condition µA(x)+ γA (x) ≤ 1 

We know that at least one of the membership or non -membership degrees must be small enough such that 

the result becomes, 

⇒ min (µA (x), γA (x)) =0 and max (γA (x), µA (x) ≤1 

Thus A - B= Ⴔ Similarly B-A= Ⴔ 

⇒ A ∆ B= Ⴔ if and only if A= B 

Definition 5.1: 

Let X be non-empty set. Intuitionistic fuzzy sets A, B, C x∈ X. The distance measures d between 

intuitionistic fuzzy sets A and B is a mapping d: X × X→ [0,1]; if d (A, B) satisfies the following axioms: 

a) 0 ≤   d (A, B) ≤ 1 

b) d (A, B) if and only if A=B 

c) d (A, B) = d (B, A) 

d) d (A, C) + d (B, C) ≥d (A, B) 

e) if A⊆B⊆C, then d (A, C) ≥d (A, B) and d (A, C) ≥ d (B, C) 

Distance measures describe the difference between intuitionistic fuzzy sets and can be considered as the 

dual concept of similarity measures. Various distance measures for intuitionistic fuzzy sets have been 

proposed [12] & [13] 

Definition 5.2: 

Let A and B be two intuitionistic fuzzy sets defined in  X and given by A= {⟨x, µA (x), γA (x), πA(x) ⟩| x∈ 

X}, B= {⟨x, µB (x), γB(x), πB(x) ⟩| x∈ X} where X= x1, x2, x3…., x n, = 1, 2, …., n. Based on the geometric 

interpretation of intuitionistic fuzzy sets [7,8,9] introduced the following four distance measures to 

quantify the distance between A and B. 

1.The Hamming Distance: 

d H (A, B) = 
1

2
∑ (𝑛

𝑖=1 | µA (xi)- µB (xi) | + | γA (xi)- γB (xi) | + | πA(xi)- πB(xi) |) 
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2.The Euclidean Distance: 

d E (A, B)= √
1

2
∑ [(𝜇𝐴(𝑥𝑖) − 𝜇𝐵(𝑥𝑖))2 + (𝛾𝐴(𝑥𝑖) − 𝛾𝐵(𝑥𝑖))2 + (𝜋𝐴(𝑥𝑖) − 𝜋𝐵(𝑥𝑖))]2𝑛

𝑖=1  

3.The Normalized Hamming Distance: 

d n-H (A, B) =  
1

2𝑛
∑ (|𝑛

𝑖=1  µA (xi)- µB (xi)) |+ | 𝛾A (xi)- 𝛾B (xi)| + | πA(xi)- πB(xi)|) 

4.The Normalized Euclidean Distance: 

d n-E (𝐴, 𝐵) = √(
1

2𝑛
) ∑ [(𝜇𝐴(𝑥𝑖) − 𝜇𝐵(𝑥𝑖))2 + (𝛾𝐴(𝑥𝑖) − 𝛾𝐵(𝑥𝑖))2𝑛

𝑖=1 + (𝜋𝐴(𝑥𝑖) − 𝜋𝐵(𝑥𝑖))2] 

Where µA (xi) and µB (xi) are the membership degrees of xi in sets A and B respectively, γ A (xi) and γB (xi) 

are the non-membership degrees of xi in sets A and B respectively and πA(xi) and πB(xi) represents the 

degree of hesitation or uncertainty of xi and n is the number of elements in the universe of discourse X. 

Example 1: 

In an E-learning course, two groups of students A and B were assessed on three key skills. Let x1, x2 and 

x3 represents Time management, Technical Proficiency, Participation in discussions respectively. Let µA= 

{0.7,0.8,0.6},𝛾A = {0.2,0.1,0.3} and µB= {0.6,0.9,0.5}, γB = {0.3,0.05,0.4} represents performance of 

group A and group B as intuitionistic fuzzy sets. 

Using the above four distance measures we calculate the distance between two groups A and B as follows: 

1. Using Hamming Distance between group A and group B is given by d H (A, B) =
0.55

6
 = 0.0917 

2. The Euclidean Distance between group A and group B is given by d E (A, B) = √0.00875 =0.0935 

3. The Normalized Hamming Distance between group A and group B is given by 

d n-H (A, B) = 
0.55

3
= 0.1833 

4. The Normalized Euclidean Distance between group A and group B is given d n-E (A, B) = √0.0175 =

 0.1323 

Among the four Distances, Hamming and Euclidean show very close values, indicating minimal 

differences between the group A and B. Normalized distances highlight individual skill variation more 

strongly. Euclidean distance best reflects overall performance similarity in E-learning. It balances 

membership and non- membership differences without exaggeration. Thus, Euclidean distance is the most 

suitable metric for comparing student groups. 

 

6. Modeling Pattern recognition in E-Learning Using Intuitionistic Fuzzy Sets [11]: 

A set of patterns is given in intuitionistic fuzzy sets and another unknown pattern called Sample is given 

in intuitionistic fuzzy sets. Both the sets of the pattern and that of the sample are within the same feature 

space ‘n’. To find the distance between any of the patterns and the sample. Let each pattern Aj= {⟨xi, µA 

(xi), γA(xi), πA(xi)⟩: xi∈ X where i=1,2…, n and 

Aj = {A1, A2, A3, …, Am} foe each m ∈ N also there is a sample to be recognized that is 

B= {⟨xi, µB(xi), γB(xi), πB(xi) ⟩: xi∈X} where i=1,2, …, n 

Example: 

In an E-Learning environment, we want to classify an unknown student’s readiness based on Intuitionistic 

fuzzy sets describing five features F= {F1, F2, F3, F4, F5} It means F= {Internal Access quality, Device 

availability, Time management skill, Self Motivations, Online communication skills}. Let the students be 
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{S1, S2, S3, S4, S5, S6, S7, S8} and eight pattern be represented by Intuitionistic Fuzzy Sets in X= {x1, x2, 

x3, x4, x5}. 

S1= {(0.8,0.1,0.1), (0.7,0.2,0.1), (0.6,0.2,0.2), (0.7,0.1,0.2), (0.6,0.3,0.1)} 

S2= {(0.9,0.05,0.05), (0.6,0.2,0.2), (0.7,0.2,0.1), (0.6,0.3,0.1), (0.7,0.2,0.1)} 

S3= {(0.7, 0.1,0.2), (0.8,0.1,0.1), (0.6,0.1,0.3), (0.5,0.3,0.2), (0.6,0.2,0.2)} 

S4= {(0.6, 0.2,0.2), (0.5,0.3,0.2), (0.7,0.2,0.1), (0.4,0.4,0.2), (0.5,0.3,0.2)} 

S5= {0.9,0.1,0.0), (0.9,0.05,0.05), (0.8.0.1,0.1), (0.7,0.2,0.1), (0.8,0.1,0.1)} 

S6= {0.7,0.2,0.1), (0.6,0.3,0.1), (0.5,0.4,0.1), (0.6,0.2,0.2), (0.6,0.2,0.2)} 

S7= {0.5,0.3,0.2), (0.6,0.2,0.2), (0.6,0.3,0.1), (0.6,0.2,0.2), (0.7,0.2,0.1)} 

S8= {(0.8,0.1,0.1), (0.7,0.2,0.1), (0.7,0.1,0.2), (0.6,0.2,0.2), (0.8,0.1,0.1)} 

Consider B is the new, unclassified student pattern whose characteristics are known but not yet assigned 

to any of the existing student classes (S1 to S8). Once computing its similarity to each known student 

pattern (S1 to S8) and based on the minimum distance, assign it to the closet known pattern. Let B= {(0.75, 

0.15, 0.10), (0.65, 0.2, 0.15), (0.7, 0.15, 0.15), (0.6, 0.25, 0.15), (0.7, 0.2, 0.1) S, B x∈ X 

Using Normalized Euclidean distance 4, We get the following results: 

d n-E (S1, B) =0.1265, d n-E (S2, B) = 0.1000, d n-E (S3, B) =0.1549, d n-E (S4, B) =0.2000, 

d n-E (S5, B) = 0.1897, d n-E (S6, B) = 0.1732, d n-E (S7, B) = 0.1673, d n-E (S8, B) =0.0894, 

The minimum distance between S8 and the unknown pattern B is 0.0894. The distance between S4 and the 

unknown pattern B is 0.2000 is the greatest. We say that the unknown pattern B belongs to S8 in terms of 

Internal Access Quality, Device availability, Time management skill, Self motivations, Online 

communication skills. 

 

7. E-Learning research using Intuitionistic fuzzy sets and normalized Euclidean distance [7]: 

Let there are 6 students say S= {S1, S2, S3, S4, S5, S6}, P= {P1, P2, P3, P4, P5, P6} be the set of E-Learning 

readiness patterns (P1= High internal access and device quality, moderate motivation, moderate 

communication, P2 = Moderate access, strong motivation, good communication, P3= Moderate across all 

features with slightly lower device availability, P4 =Balanced profile, average in all categories,  P5 = Strong 

self-motivation and communication skills, P6 = High environment quality, strong device support, average 

time management) based on 6 features, F= {F1, F2, F3, F4, F5 , F6} where F1= Internet Access quality, F2= 

Device availability, F3 =Time management skill, F4 =Self motivations, F5 = Online communication skills, 

F6 =Internet and  learning environment be a set of features. Each student and pattern are represented by an 

intuitionistic fuzzy set (µ, γ, π) for each feature. 

 

Table I: E-learning readiness patterns: 

Pattern F1 F2 F3 F4 F5 F6 

P1 (0.90, 0.05, 

0.05) 

(0.85,0.10, 

0.05) 

(0.80, 0.15, 

0.05) 

(0.78, 0.12, 

0.10) 

(0.82, 0.10, 

0.08) 

(0.79, 

0.15,0.06) 

P2 (0.88, 0.07, 

0.05) 

(0.82,0.13,

0.05) 

(0.76, 0.18, 

0.06) 

(0.80, 0.15, 

0.05) 

(0.85, 0.08, 

0.07) 

(0.81, 0.14, 

0.05) 

P3 (0.84, 0.10, 

0.06) 

(0.78,0.18,

0.04) 

(0.75, 0.20, 

0.05) 

(0.76,0.17, 

0.07) 

(0.80, 0.15, 

0.05) 

(0.77, 

0.18,0.05) 

P4 (0.86, 0.08, 

0.06) 

(0.80, 0.15, 

0.05) 

(0.79,0.16, 

0.05) 

(0.75, 0.18, 

0.07) 

(0.81, 0.13, 

0.06) 

(0.78, 0.16, 

0.06) 
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P5 (0.87, 0.06, 

0.07) 

(0.83,0.12, 

0.05) 

(0.78, 0.17, 

0.05) 

(0.77, 0.14, 

0.09) 

(0.83, 0.11, 

0.06) 

(0.80, 0.13, 

0.07) 

P6 (0.89, 0.05, 

0.06) 

(0.84, 0.11, 

0.05) 

(0.77, 0.19, 

0.04) 

(0.79, 0.13, 

0.08) 

(0.84, 0.09, 

0.07) 

(0.82, 

0.12,0.06) 

 

Table 2: Intuitionistic fuzzy sets of Students 

Student F1 F2 F3 F4 F5 F6 

S1 (0.88,0.06, 

0.06) 

(0.81, 0.13, 

0.06) 

(0.77, 0.18, 

0.05) 

(0.74,0.18, 

0.08) 

(0.80, 0.12, 

0.08 

(0.76, 0.18, 

0.06) 

S2 (0.85,0.08, 

0.07) 

(0.79, 0.16, 

0.05) 

(0.74,0.21, 

0.05) 

(0.75, 0.17, 

0.08) 

(0.79, 0.14, 

0.07) 

(0.75, 0.18, 

0.07) 

S3 (0.86, 0.07, 

0.07) 

(0.80, 

0.14,0.06) 

(0.76, 0.19, 

0.05) 

(0.76, 0.16, 

0.08) 

(0.81, 0.13, 

0.06) 

(0.77, 0.17, 

0.06) 

S4 (0.89, 0.05, 

0.06) 

(0.83,0.12, 

0.05) 

(0.78,0.17, 

0.05) 

(0.78, 

0.14,0.08) 

(0.83, 0.11, 

0.06) 

(0.79, 0.14, 

0.06) 

S5 (0.87, 

0.06,0.07) 

(0.82, 

0.13,0.05) 

(0.75, 0.20, 

0.05) 

(0.77, 0.15, 

0.08) 

(0.82, 0.10, 

0.08) 

(0.78, 0.16, 

0.06) 

S6 (0.90, 0.04, 

0.06) 

(0.84, 0.11, 

0.05) 

(0.76, 0.18, 

0.06) 

(0.79, 0.12, 

0.09) 

(0.84, 0.09, 

0.07) 

(0.81, 0.13, 

0.06) 

 

Table 3: Normalized Euclidean Distance Between Each Student and each Pattern 

Student P1 P2 P3 P4 P5 P6 Best 

match 

S1 0.04690 0.04899 0.04163 0.02517 0.03916 0.05260 P4 

S2 0.06733 0.05944 0.02236 0.03559 0.05196 0.06557 P3 

S3 0.04899 0.04282 0.02887 0.02236 0.03266 0.04761 P4 

S4 0.02380 0.02887 0.05686 0.03606 0.01291 0.02236 P5 

S5 0.040541 0.03109 0.04435 0.03512 0.02646 0.03317 P5 

S6 0.02769 0.02944 0.07071 0.05447 0.02517 0.01414 P6 

 

This confirms that the model successfully identifies student alignment with E-learning readiness patterns 

using intuitionistic fuzzy sets and normalized Euclidean distance. 

 

8. Conclusion 

This research successfully presents a novel mathematical framework for adaptive E-learning module 

recommendation using intuitionistic fuzzy sets (IFS) and normalized Euclidean distance. By modeling 

each learner’s readiness using intuitionistic fuzzy values capturing degrees of membership, non -

membership, and hesitation, we affectively represent real-world uncertainity in student’s E-learning 

behavior. The result shows that this solution, using intuitionistic fuzzy sets and Euclidean distance, offers 

a strong and easy to understand model for providing personalized learning experience. This framework 

offers a practical and interpretable solution for adaptive education, with potential for future expansion 

through real-time dynamic learning data. We extend the current model on Euclidean measure in 

intuitionistic fuzzy set and interval-valued intuitionistic fuzzy set. 
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