
 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR250452115 Volume 7, Issue 4, July-August 2025 1 

 

A Survey on Properties of Some Power Graphs 
 

Manju 
 

Research Scholar, Om Sterling Global University, Hisar  

manjuaneja05@gmail.com 

Abstract 

Algebraic graph theory explores the relationship between algebraic structures and graph theory. One 

significant area of study within this field is the investigation of power graphs derived from groups. In 

recent years, there has been substantial progress in understanding various aspects of power graphs, 

including their connectivity, spectral properties, isomorphism, automorphism, and characterization in 

terms of groups. A power graph is a type of graph derived from a mathematical structure, the power graph 

G(G) of a group G is a simple graph where the vertices represent the elements of the group, and two 

distinct vertices are adjacent if one is a power of the other. In this paper, our main objective is to provide 

a comprehensive survey focusing on the properties of enhanced power graphs, reduced power graphs. 

These variations of power graphs offer refined insights into the underlying group structure and its 

relationship with graph-theoretic properties. 

 

Keywords: enhanced Power graph, reduced power Graph, connectivity, spectra. 

 

Introduction 

The study of reduced power graphs and enhanced power graphs of groups has been a subject of interest 

for many researchers, leading to significant advancements in group theory and graph theory. Many results 

on these graphs can be found in the survey paper [15,16]. 

The concept of directed power graph (G) of a group G, introduced by Kelarev and Quinn [1], is a digraph 

with vertex set G and for any a, b ∈ G, there is a directed edge from a to b in P(G) if and only if ak = b, 

where k ∈ N. 

Following this, Chakrabarty et al [2] defined the undirected power graph P(G) of a group G as an undirected 

graph whose vertex set is G and two vertices u; v are adjacent if and only if u = v and um = v or vm = u 

for some positive integer m. After this, undirected power graph became the main focus of study. 

The directed reduced power graph of G, denoted by 𝑷(G)⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗  ⃗, is a digraph with vertex set G, and 

for u, v ∈ G, there is an arc from u to v if and only if u /= v, v = un for some positive integer n 

and ⟨v⟩ /= ⟨u⟩; which is equivalent to say u /= v and ⟨v⟩ ⊂ ⟨u⟩. The (undirected) reduced power 

graph of G, denoted by P(G), is the underlying graph of 𝑷(G)⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗  ⃗. This means that the set of vertices 

of P(G) is equal to G and two vertices u and v are adjacent if and only if u /= v, un = v and ⟨v⟩ /= 

⟨u⟩ or vn = u and ⟨v⟩ /= ⟨u⟩ for some positive integer n; which is equivalent to say u /= v and 

⟨v⟩ ⊂ ⟨u⟩ or ⟨u⟩ ⊂ ⟨v⟩. The term enhanced power graph of a group was introduced by Aalipour 

et al. [4] as a graph that includes properties from both the power graph and the commuting graph, where 

the commuting graph of a group G, denoted by C(G), is the graph whose vertex set is G, and two distinct 

elements x, y are adjacent if xy = yx. The enhanced power graph of a group G is denoted by Pe(G) 

and is defined as a simple graph with vertex set consisting of all elements of G, where two distinct vertices 
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x, y are adjacent if and only if ⟨x, y⟩ is a cyclic subgroup of G. Example, the power graph and the enhanced 

power graph of abelian group Z2 ×Z6 in Fig. 1. [14] 

 

 
Figure 1.   (a) P (Z2 × Z6);   (b) Pe(Z2 × Z6). 

 

The enhanced power graph is called dominatable if it has a dominating vertex other than identity. The 

study of the spectral properties of the power graphs has been made for some classes of groups. In 

[5,6,7,9,10,11] the like L-spectra of power graph of finite cyclic groups and dihedral groups, some finite 

abelian p- groups, A -spectra of power graphs of cyclic groups, dihedral groups whose order is twice a 

prime power, quaternion groups and also obtained lower and upper bounds for spectral radii of these 

graphs. 

 

1. Spectrum and connectivity of Reduced Power Graph: 

Throughout this paper we consider G as a finite group. For an undirected graph G with vertex set V(G) = 

{v1, v2, . . . , vn}, 

Adjacency matrix A(G) of G is the n × n matrix with (i, j) th entry is 1, if vi and vj are adjacent, and 0 

otherwise. Degree of the Vertex D(G)= diag (d1, d2, . . . , dn) where di is the degree of the ver- tex vi of 

G, i   1, 2, . . . , n. Laplacian matrix L(G) of G is the matrix D(G)_ A(G). The eigenvalues of A(G) and 

L(G) are said to be the A-spectrum and L-spectrum of G, respectively. The vertex connectivity of a 

graph G, denoted by κ P(G), is the minimum number of vertices whose removal results in a disconnected 

or trivial graph. 

Theorem 1.1 (Theorem 2.2 [12]): (1)  If p is a prime and m ≥ 1 is an integer, then the L-spectrum of RP (Zpm) 

is 0, pm, pm − ϕ(pm), pm − ϕ(pm−1), pm − ϕ(pm−2), . . . , pm − ϕ(p) with multiplicities 1, m, ϕ(pm) − 1, 

ϕ(pm−1) − 1, ϕ(pm−2) − 1, . . . , ϕ(p) − 1, respectively. 

(2) Let n = pq, where p, q be two distinct primes. Then the L-spectrum of RP(Zn) is 0, n, n − ϕ(n), ϕ(n) + 1 

with multiplicities 1, 2, ϕ(n) − 1 and n − ϕ(n) − 2, respectively. 

Lemma 1.1 (Lemma 2.1 [12]): If n ≥ 2 is an integer which is not a prime power, then RP(ℤn )̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is the disjoint 

union of connected components K1, Kϕ(n) and RP(ℤn )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − Sn. 
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Lemma 1.2 (Lemma 2.2 [12]): RP(ℤn ) − Sn  is connected if and only if n ≠ p2 and pq, where p, q are distinct  

primes. 

Theorem 1.2 (Theorem 2.4 [12]): If n ≥ 1 is an integer and p isa prime, then the L-spectrum of RP(ℤp2
n ) is 0, 

1, p2n, pn+1 − pn + p, p and pn+1 − pn + 1 with multiplicities 1, t − 1, 1, t, t(pn+1 − pn − 1) and t(p − 2), 

respectively, where t = (pn − 1)(p − 1). 

Corollary 1.1 (Corollary 2.2 [12]): If p is a prime, then the L-spectrum of RP(ℤp2 × ℤp) is 0, 1, p3, p3 − 

p2 + 

p, p and p3 − p2 + 1 with multiplicities 1, p(p − 1), 1, 1, p3 − p2 − 1 and p−2, respectively. 

Corollary 1.2 (Corollary 2.3[12]: Let G be a group of order n such that it is isomorphic to a p-group with expo- 

nent p or non-nilpotent group of order pmq with all non-trivial elements are of order p or q, where p,q are 

distinct primes. Then the L-spectrum of RP(G) is 0,1 and n with multiplicities 1, n−2 and 1, respectively. 

Theorem 1.3 (Theorem 3.1[12]): For any integer n ≥ 3, the L-spectrum of RP(D2n) is given by 

𝜆𝑖(𝑅𝑃(𝐷2𝑛)) =

{
 
 

 
 

2𝑛
𝑛

𝜆𝑖(𝑅𝑃(ℤ𝑛))

1
0

|
|

 𝑓𝑜𝑟 𝑖 = 1;
𝑓𝑜𝑟 𝑖 = 2;

𝑓𝑜𝑟 3 ≤ 𝑖 ≤ 𝑛 − 1;
𝑓𝑜𝑟 𝑛 ≤ 𝑖 ≤ 2𝑛 − 1;

𝑓𝑜𝑟 𝑖 = 2𝑛. }
 
 

 
 

 

In particular, we have the following: 

(i) If n = pm, where p is a prime and m ≥ 1, n /= 2, then the L-spectrum of RP(D2n) is 0, 2n, n, n − ϕ(pm), n 

− ϕ(pm−1), . . . , n − ϕ(p) and 1 with multiplicities 1, 1, m − 1, ϕ(n) − 1, ϕ(pm−1) − 1, . . . , ϕ(p) − 1 and n, 

respectively. 

(ii) If n = pq, where p and q are distinct primes, then the L-spectrum of RP(D2n) is 2n, n, n− ϕ(n), ϕ(n)+1, 1 

and 0 with multiplicities 1, 1, ϕ(n) – 1, n − ϕ(n) – 2, n and 1, respectively. 

Corollary 1.3 (Corollary 3.1[12]): (1) The L-spectrum of RP(Q2α ), where α ≥ 4 is 0, 2, 2α−1 − ϕ(22) 

2α−1 − ϕ(23), . . .  , 2α−1 − ϕ(2α−1), 2α−1, and 2α with multiplicities 1, 2α−1, ϕ(22) − 1, ϕ(23) − 1, ...  , ϕ(2α−1) 

− 1, α − 3 and 2, respectively. 

(2) The L-spectrum of RP(Q8) is 0, 2 and 8 with multiplicities 1, 5 and 2, respectively. 

Corollary 1.4 (Corollary 3.2 [12]): The L-spectrum of RP(SD2α ), where α ≥ 4 is 0, 1, 2, 2α−1 − ϕ(22), 

2α−1 − ϕ(23), . . .  , 2α−1 − ϕ(2α−1), 2α−1,3 · 2α−2, and 2α with multiplicities 1, 2α−2, 2α−2, ϕ(22) − 1, ϕ(23) − 1, 

. . .  , ϕ(2α−1) − 1, α − 3, 1 and 1, respectively. 

In these Results, author proves the L- Spectrum of reduced power graphs like dihedral groups, Quaternion 

groups, Semi-dihedral groups. 

Conjectures 1 Akbari and Ashrafi, [11] 

The reduced power graph of a non-abelian simple group G is connected only if G is isomorphic to some 

alternating group An. 

Theorem 1.4 [3]: PGLn (F2) has a disconnected reduced power graph if and only if at least one of the 

following three situations occurs. 

1. n or n−1 is prime. 

2. n has a prime factor p1 such that p0 = 2p
1 −1 is also prime and n ≤ 2p

1 − 2. 

https://www.ijfmr.com/
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3. n−1 has a prime factor p1 such that p0 = 2p
1 −1 is also prime and n ≤ 2p

1 − 1. 

By this theorem, author disprove the above given conjecture 1 for connectedness of reduced power graph. 

Proposition 1 (Proposition 5.1. [15]) Let n be a positive integer and let ϕ(n) denotes its Eulers totient 

function. Then (1) κ(RP(Zn)= n − ϕ (n), if 2ϕ(n)+1≥ n; 

(2) κ(RP(Zn)) ≥ ϕ(n) + 1, if 2ϕ(n) +1 < n. The equality holds for n = 2p, where p is a prime. 

Corollary 1.5 (Corollary 5.1. [15]) Let n ≥ 2 be an integer. Then we have the following: 

(1) κ(RP∗(Zn)) = n − ϕ(n) − 1 if 2ϕ(n) + 1 ≥ n; 

(2) κ(RP∗(Zn)) ≥ ϕ(n) if 2ϕ(n) + 1 < n. The equality holds for n = 2p, where p is a prime. 

Corollary 1.6 (Corollary 5.2.[15])  𝜅(RP (ℤ𝑝𝑚))) = 𝑝
𝑚−1and 𝜅(RP*(ℤ𝑝𝑚)) = 𝑝

𝑚−1-1, 

where p is a prime and m is a positive integer. 

In these results, author proves the vertex connectivity for cyclic groups. 

Proposition 2(Proposition 5.4. [15]) For an integer n ≥ 3, 

(1)  κ(RP(D2n)) = 1 and κ(RP∗(D2n)) = κ(RP∗(Zn)); 

Proposition 3 (Proposition 5.5.[15]) For an integer n ≥ 2, 

(1) κ(RP(Q4n)) = 2 and κ(RP∗(Q4n)) = 1; 

Proposition 4 (Proposition 5.6.[15]) For an integer n ≥ 3, 

(1)  κ(RP(SD8n)) = 1 = κ(RP∗(SD8n)); 

Corollary 1.7 (Corollary 5.4.[15]) Let G be a finite p-group, where p is a prime. The 

𝜅(RP(𝐺)) =  {
𝑝𝑚−1

2
1

|

if G ≅  ℤ𝑝𝑚 ,m ≥ 1;

if G ≅  𝑄2𝛼,𝛼 ≥ 3;

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

} 

In these results, author proves the vertex connectivity of reduced power graphs like dihedral groups, Quaternion 

groups, Semi-dihedral groups. 

2. Connectivity of Enhanced Power Graph 

Theorem 2.1 (Theorem 1.1 [14]) Let G be a finite p-group such that G is neither cyclic nor generalized 

quaternion group. Then 𝜅(𝒢𝑒(𝐺)) = 1. 

Theorem 2.2 (Theorem 1.2 [14]) Let G be a finite non-cyclic abelian group. Then is equal to 

𝜅(𝒢𝑒(𝐺)) =1 if and only if G is a p-group. 

Theorem 2.3 (Theorem 1.5 [14]) Let G be a non-cyclic abelian non p-group such that G ≌ G1 × Zn; g.c.d 

(|G1|, n) =1 and G1 has no cyclic sylow subgroup. Then 𝒢𝑒
∗∗(𝐺) is disconnected if and only if G1 is a p-

group 

Theorem 2.4 (Theorem 1.7 [14]) Let G be a non-cyclic abelian non-p-group such that G ≌ G1 × Zn; g.c.d 

(|G1|, n) = 1 and G1 is a p-group with no cyclic sylow subgroup. Then  𝜅(𝒢𝑒(𝐺)) = 𝑛. 

Lemma 1. (Lemma 2.5 [14]) Let G be a finite group and x, y ϵ G \ {e} be such that gcd (o(x), o(y)) = 1 

and xy = yx. Then, x ~ y in 𝒢𝑒
∗(𝐺). 

Lemma 2.  (Lemma 2.7 [14]) Let G be any non-cyclic group. For any dominating vertex v (≠ e) of G 

there exists a prime p dividing o(v) such that G has a unique subgroup of order p. 

Theorem 2.5 (Theorem 2.8 [14]) For any group G, the graph P*(G) is connected if and only if the graph 

𝒢𝑒
∗(𝐺) is connected. 

Corollary 1 (Corollary 1 [14]) Let G be a finite non-cyclic abelian group. Then 𝜅(P(𝐺))  is equal to1 

https://www.ijfmr.com/
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if and only if G is a p-group. 𝕫𝑝1𝑡11  

Corollary2 (Corollary 2 [14]):  Let G be a non-cyclic abelian group such that 

G ≌ 𝕫𝑝1𝑡11 × 𝕫𝑝1𝑡12 × 𝕫𝑝1𝑡13 ×… .× 𝕫𝑝1
𝑡1𝑘1

× 𝕫𝑝2𝑡21 × 𝕫𝑝2𝑡22 × … .× 𝕫𝑝2
𝑡2𝑘2

× …× 𝕫𝑝𝑟𝑡𝑟1 × 𝕫𝑝𝑟𝑡𝑟2 …×

𝕫
𝑝𝑟
𝑡𝑟𝑘𝑟

 ,where ki ≥ 1 and 1 ≤ ti1 ≤ ti2 ≤  · · ·  ≤ tiki , for all i ϵ [r]. 

Then,  𝜅(𝑃(𝐺)) ≤ 𝑝1
𝑡11𝑝2

𝑡21 … . . 𝑝𝑟
𝑡𝑟1 − 𝜙(𝑝1

𝑡11𝑝2
𝑡21 … . 𝑝𝑟

𝑡𝑟1). 

 

By these Above theorems, author shows the vertex connectivity of non-cyclic abelian groups. 

 

Theorem 2.6 (Theorem 4.1 [14]): Let G be the dihedral group of order 2n. Then to 𝜅(𝒢𝑒(𝐺)) is equal to 1. 

Theorem 2.7(Theorem 4.2 [14]): For n ≥ 3; let Q2n be the generalized quaternion group. Then the vertex 

connectivity of to (𝒢𝑒(𝑄2𝑛)) is 2. 

Corollary 3 (Corollary 3 [14]): Let 𝑄2𝑛be the generalized quaternion group. Then the enhanced power graph 

𝒢𝑒
∗(𝑄2𝑛) is connected but the proper enhanced power graph Then 𝒢𝑒

∗∗(𝑄2𝑛) is disconnected. 

 

Theorem 2.8(Theorem 4.3 [14]): Let G be a symmetric group with n ≥ 3: Then 

(1) If n ≥ 3 and neither n nor n — 1 is a prime, then P * ( G) is connected. 

(2) If n is such that either n or n — 1 is a prime, then P * ( G) is disconnected. 

 

Theorem 2.9(Theorem 4.6 [14]): Let G = An be the alternating group and n ≥ 4. Then 

(1) If n, n — 1, n — 2, n=2, (n — 1)/2, (n — 2)/2 are not primes, then P * ( G)  is connected. 

(2) If n is such that any one of n, n — 1, n — 2, n/2, (n — 1)/2, (n — 2)/2 is prime, then P * ( G)  is not connected. 

In these results, author find the vertex connectivity of some non-abelian groups (dihedral groups, 

quaternion groups, alternating groups). 

 

Conclusion: 

Algebraic graph theory emerged at the crossroads of algebra and graph theory, leveraging abstract 

algebraic concepts to study graphs while also applying graph theory to understand properties of algebraic 

structures. In recent years, Power graph is one such major graph representation of semigroups, groups, 

many results on the power graphs have been obtained Our review deals with recent advancements, 

focusing on some properties of reduced and enhanced power graphs of groups. We want to conclude by 

listing a few fundamental open problems. we also redirect the interested reader to the survey article [8,17] 

for open questions that are still unsolved. While our list is not exhaustive and reflects our own interests 

and experiences, we encourage readers to develop deeper into the subject and explore the rich landscape 

of unsolved questions. 

Problem 1. [8] Is there a simple algorithm for constructing the directed power graph or the enhanced 

power graph from the power graph, or the directed power graph from the enhanced power graph? 

Problem 2. [8] What can be said about groups G for which DC(G) = Pe(G)? 

Problem 3. (Problem 6 [8]) (a) What is the smallest group for which a given graph is embeddable in the 

enhanced power graph of the group? 

(b) What is the smallest group in which every graph on n vertices can be embedded the enhanced power 

graph of the group? 
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