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Abstract 

Active learning is an interactive machine learning paradigm in which the model selectively queries an 

oracle (e.g. a human annotator) to label the most informative unlabeled examples. This enables building 

accurate models using far fewer labeled data than traditional supervised learning. In this paper, we 

define active learning and contrast it with conventional “passive” learning. We review common active 

learning architectures (pool-based, stream-based, membership query synthesis), label selection strategies 

(uncertainty-based, diversity-based) and describe in detail how to implement an active learning loop 

using modern tools (e.g. scikit-learn, PyTorch, modAL). We compare the results of applying active 

learning to the Iris Dataset[11] and Titanic Dataset[12] for classification using various label selection 

strategies. We then present a real-world–inspired case study of using active learning on drone-collected 

power-line inspection imagery. In this scenario, a convolutional vision model (e.g. YOLOv8) is 

iteratively refined by selectively querying a few ambiguous frames for expert annotation, dramatically 

reducing labelling effort. We report on potential savings: for example, an AWS-case active learning 

pipeline achieved ~90% reduction in labelling cost and cut annotation turnaround from weeks to 

hours [1]. We also discuss limitations and pitfalls of active learning (e.g. human-in-the-loop cost, 

computational overhead, class imbalance issues [2][3]). In summary, active learning can greatly improve 

data efficiency and agility of AI model development, but it requires careful design of query strategies 

and system integration. 

 

Keywords: Active Learning, Data Labelling Efficiency, Machine Learning Optimization, Anomaly 

Detection, Drone Imagery Analysis 

 

1. What is Active Learning 

Active learning is a machine learning strategy in which the model actively selects which data points 

should be labeled to improve its performance, rather than relying on a fixed, fully labeled dataset. In 

active learning, one typically starts with a small seed of labeled examples and a large pool of unlabeled 

data. The model is trained on the small labeled set, then uses a query strategy (often based on prediction 

uncertainty) to choose the “most informative” (or diverse) samples to be annotated by an oracle (usually 

a human expert). These newly labeled examples are added back to the training set and the model is 

retrained. This cycle repeats, allowing the model to focus its labelling effort on the most valuable data, 

till a pre-determined accuracy is reached or a labelling budget is exhausted. In other words, the learning 

algorithm “asks questions” (queries labels) about the examples it is least certain about. Active learning 

seeks to achieve strong performance with far fewer training samples by iteratively querying an oracle for  
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labels on carefully selected data points.[4] 

This approach contrasts with standard supervised learning, where a large labeled dataset is prepared in 

advance and the model learns passively from it. In active learning, by contrast, the model plays an active 

role in data selection. For example, Balakrishnan describes active learning as letting the algorithm query 

the “most uncertain or impactful samples” to label, rather than labelling vast amounts of data at 

random [2]. Likewise, Li et al. note that active learning iteratively asks an oracle to label selected 

samples in a human-in-the-loop process [4]. The ultimate goal is to minimize labelling cost and time 

while achieving accuracy close to that of a model trained on a much larger fully labeled set. In practice, 

active learning has been shown to yield competitive performance with significantly fewer labeled 

examples [4]. 

Active learning applies broadly across domains – from image and text classification to anomaly 

detection. It is especially valuable when labelling is expensive or time-consuming, such as in medical 

imaging or autonomous driving. By focusing human effort on the data examples that the model finds 

most confusing, active learning maximizes the value of each labeled example. As one practitioner notes, 

“active learning is a strategy to optimize the human labor required to build effective ML systems” [5]. 

Ultimately, active learning is a form of data-centric AI: it seeks to curate the best possible training data 

incrementally so that the model learns rapidly and efficiently. 

 

2. Difference Between Traditional and Active Learning 

In traditional supervised learning (sometimes called “passive learning”), the model is trained on a fixed, 

pre-labeled dataset. All available training examples come with labels before training begins and the 

model simply learns from these examples. Once training is finished, the learning process is complete – 

there is no further interaction or selection of new data. This approach requires gathering and labelling 

potentially vast datasets upfront, which can be costly and laborious. For example, passive learning might 

require tens or hundreds of thousands of labeled images to reach high accuracy. In this setting, the data 

labelling is independent of the model: labels are collected once and for all. 

In active learning, by contrast, labelling is adaptive and focused. Instead of labelling a large static set, 

the model starts with a small labeled seed and then iteratively selects which additional samples should be 

labeled. Key differences include: 

• Labelling Budget: Active learning often assumes a limited labelling budget. The algorithm 

strategically allocates this budget to the most informative samples. In passive learning, there is no 

such selection strategy; all samples (or a random subset) are labeled. 

• Data Selection: In active learning, the model uses a query strategy (e.g. uncertainty sampling) to 

pick examples to query for labels [4][2]. In passive learning, there is no query strategy – the training 

set is pre-defined. 

• Adaptivity: Active learning is adaptive – each round of labelling can use information from the 

current model. Passive learning is static and does not adapt based on model uncertainty. 

• Cost and Efficiency: Because active learning focuses on “hard” or ambiguous cases, it can achieve 

comparable performance with far fewer labeled examples. Passive learning typically needs more 

labeled data and time to reach the same accuracy. As one source notes, active learning “doesn’t need 

as many labels due to the impact of informative samples; passive learning needs more data, labels 

and time to train a model to achieve the same results” [6]. 
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For example, in a computer vision task, a passive approach might require tens of thousands of labeled 

images of every object class to train a detector. An active learning approach would start with a handful 

of examples and only ask an expert to label additional images where the model is uncertain (e.g. images 

with occluded or rare objects). This can reduce the total labelling cost significantly while achieving 

similar model quality. In sum, active learning “actively participates” in label acquisition to optimize 

learning efficiency [6], whereas traditional supervised learning is “passive” with respect to data 

selection. 

 

3. Architectures of Active Learning 

Active learning can be implemented in several scenarios or “architectures,” often categorized as pool-

based, stream-based and membership query synthesis modes [5][3]. Each mode determines how the 

unlabeled data is accessed and queried: 

• Pool-based Active Learning: There is a large pool of unlabeled data available. In each iteration, the 

active learner evaluates all (or a random subset of) unlabeled examples using a query strategy and 

selects the most informative examples to be labeled. This is the most common setting in literature 

and practical systems. For instance, the model might rank all images in an unlabeled pool by 

prediction confidence (or another utility measure) and then request labels for the top-k lowest-

confidence examples [5]. Pool-based AL is powerful but can be memory-intensive, since it often 

requires scoring many samples each round. 

• Stream-based (Selective) Active Learning: Unlabeled data arrives as a stream (e.g. one example at 

a time). For each new example, the model decides on-the-fly whether to query its label or discard it. 

This could be based on a confidence threshold: if the model is uncertain about the current sample, it 

queries the oracle, otherwise it assumes the model’s prediction is correct. Stream-based AL is often 

used when data cannot be stored en masse and arrives continuously. It tends to be computationally 

lighter, as each instance is considered in sequence. However, it can be less optimal than pool-based 

AL because early budget exhaustion may prevent the model from seeing later examples. In real-

world systems like video streams or sensor feeds, stream-based querying can catch surprising cases 

(e.g. anomalies) as they occur, but one must carefully manage the query budget so as not to run out 

of labels too soon [3][5]. 

• Membership Query Synthesis: The model is allowed to create or synthesize new examples for 

labelling, rather than only selecting from existing data. In this mode, the learner may generate 

counterfactual or augmented samples that it believes would be informative. For example, in image 

tasks, one might apply transformations (scaling, cropping, brightness changes) to create new inputs 

that cover underrepresented conditions. This is akin to data augmentation guided by the model’s 

needs. Membership query synthesis can be very effective when labeled data is extremely scarce, but 

it requires domain-specific mechanisms to ensure the generated samples are realistic. For instance, 

one could synthesize a new view of a power-line image by slightly perturbing an existing one, then 

query whether an anomaly is present. In practice, this mode is less common, but concepts like 

generative models or GAN-based query synthesis fall under this category. 

Often active learning systems combine multiple strategies for sample selection for labelling. For 

example, one might use pool-based sampling with a “committee” of models to gauge disagreement 

(query-by-committee) or select a sample based on the model’s confidence (or lack thereof) in its 

prediction. Architecturally, an active learning loop typically involves a training pipeline and a labelling 
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pipeline (see Fig. 1). The training pipeline trains or fine-tunes the model on the current labeled data. The 

labelling pipeline scores or inspects new unlabeled data, selects samples according to a query strategy 

and sends them to annotators. The newly labeled data is fed back into the training set for the next 

iteration. (For example, AWS implemented separate labelling and training code pipelines to automate 

this iterative loop. [1]) 

Several query selection strategies are employed in active learning to determine which data points to la-

bel: 

• Uncertainty Sampling: Selects data points where the model’s predictions have the least confidence. 

• Query by Committee (QBC): Utilizes multiple models to identify data points where there is disa-

greement among their predictions. 

• Diversity Sampling: Ensures a diverse set of examples is labelled to avoid overfitting to a specific 

subset of data. 

[2] 

More advanced techniques include Bayesian active learning or expected model change. Ultimately, the 

architecture of an active learning system depends on the domain requirements (e.g. whether data streams 

in, the cost of labelling and computational resources) and the chosen query strategy. 

 

 
Figure 1. General pipeline of a pool-based active learning system. Starting from a small labeled set 

(left), train a model (center), apply a query strategy to an unlabeled data pool (right) and send 

selected samples to an oracle for annotation. Labeled samples are returned to the training set and 

the cycle repeats. 
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4. Technical Implementation of Active Learning 

Implementing an active learning system involves several components: data handling, model training, 

query strategy and human annotation. Fortunately, many machine-learning libraries and frameworks 

support active learning workflows. In Python, for example, modAL is a popular open-source library that 

provides a modular AL framework built on scikit-learn [8]. ModAL’s ActiveLearner class orchestrates 

the AL loop. One defines a base estimator (any scikit-learn classifier or regressor or even a neural 

network via wrappers) and a query strategy. A simple code snippet illustrates usage: 

 

from modAL.models import ActiveLearner 

from modAL.uncertainty import uncertainty_sampling 

from sklearn.ensemble import RandomForestClassifier 

 

# X_init, y_init: initial labeled features and labels 

# X_pool: unlabeled feature pool 

learner = ActiveLearner(estimator=RandomForestClassifier(), 

query_strategy=uncertainty_sampling, 

X_training=X_init, y_training=y_init) 

 

# Query the most uncertain point 

query_idx, query_instance = learner.query(X_pool) 

 

# Suppose an oracle (human) provides its label y_new 

learner.teach(X_pool[query_idx], y_new) 

 

In this example, the uncertainty_sampling strategy selects the sample whose predicted class has lowest 

confidence. ModAL also supports other strategies (margin sampling, entropy, committee, Bayesian 

methods) and handles batch querying. Importantly, modAL can wrap any model. For instance, one can 

use a neural network by passing a Keras or PyTorch model (wrapped via an adapter) as the 

estimator [13]. Other active learning toolkits exist as well, such as ALiPy (Active Learning in Python) 

[14] which provides dozens of AL algorithms or custom scripts in research code. In practice, many 

teams implement their own loop using core ML frameworks. 

At a lower level, the query strategies can be implemented manually. A common approach is uncertainty 

sampling using model prediction probabilities. If a classifier outputs softmax probabilities over 

classes, one measure of uncertainty is the highest-class probability: uncertainty = 1 – 

max(probabilities) [7]. The instance with the largest uncertainty is selected. Concretely: 

 

probs = model.predict_proba(X_pool)         # shape (n_samples, n_classes) 

uncertainty = 1.0 - np.max(probs, axis=1)   # U(x) = 1 - P(max_class|x) 

query_idx = np.argmax(uncertainty)          # index of highest uncertainty 

 

Other uncertainty measures include margin sampling (difference between top two class probabilities) 

and entropy sampling (entropy of the probability distribution) [7]. In unlabelled data pipelines, one 

typically computes these scores for all (or many) unlabeled points and picks the top-k. 
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For deep learning models (e.g. CNNs on images), one often uses frameworks like PyTorch or 

TensorFlow. The model can be trained on the current labeled set as usual (with standard training code). 

To get uncertainty estimates, common practices include using Monte Carlo Dropout (enable dropout at 

inference time to get a distribution of predictions) [15] or ensembles of models [16]. Libraries like 

modAL can also wrap PyTorch by using hybrid code. Alternatively, one could use scikit-

learn estimators (e.g. SVM, random forests) inside modAL for tasks like text classification or when data 

is smaller. 

Scaling active learning to large data is an engineering challenge. For example, scoring a large unlabeled 

pool on every iteration can be computationally expensive. Techniques like batch active learning (query 

a batch per round) [17], subset selection (score a random subset of the pool) [18] or incremental model 

updates (warm-start training) [19] are used to mitigate overhead. Some practitioners integrate active 

learning with cloud infrastructure: AWS, Google and others provide labelling and pipeline tools. For 

instance, an AWS active learning pipeline used SageMaker Ground Truth for labelling, S3 for storage 

and CodePipeline for orchestration [1]. In that system, new images are scored by a SageMaker model; 

those with low confidence trigger a Ground Truth labelling task; and a retraining job periodically 

incorporates the newly labeled data. [1] 

In summary, a technical implementation involves: (1) training an initial model on a small labeled 

dataset, (2) scoring or evaluating a pool of unlabeled data according to a query criterion, (3) soliciting 

labels for the selected examples (via a labelling interface or tool) and (4) retraining or fine-tuning the 

model. Code libraries like modAL[8] and ALiPy automate much of this loop, but custom integration 

with data pipelines and UI/annotation tools is usually needed for production. For example, open-source 

platforms like Roboflow or Labelbox offer active learning workflows where new data is sent for 

annotation when it falls below a confidence threshold [5]. Overall, implementing active learning requires 

both algorithmic code and system integration to manage data flows and human-in-the-loop labelling. 

 

5. Comparative Analysis of Uncertainty, Committee and Acquisition Function Strategies for 

Sample Selection – Iris Dataset 

To better understand the practical effectiveness of different active learning strategies, we conducted a 

comparative analysis using the classic Iris dataset [11]. This section evaluates three widely used sample 

selection techniques—Uncertainty Sampling, Query-by-Committee, Acquisition Function-based 

Selection—by applying them to the same classification task and observing how quickly each method 

converges to high model accuracy with minimal labeled data. The goal is to empirically demonstrate 

how the choice of strategy affects learning efficiency, particularly when labeled data is scarce. 

The Iris dataset is a well-known multivariate dataset introduced by Ronald A. Fisher in 1936. It consists 

of 150 samples, each described by four features—sepal length, sepal width, petal length and petal 

width—classified into one of three species of the Iris flower: Setosa, Versicolor and Virginica. Owing to 

its balanced structure and interpretability, the dataset is commonly used for evaluating machine learning 

models, particularly classification algorithms. Its small size and well-separated classes make it ideal for 

benchmarking active learning strategies in controlled experiments. 

I initialized the ActiveLearner with 10 randomly selected rows from the dataset. Then I ran the Active 

Learning loops with Query Sizes of 10, 20 and 30 instances. The results are shown in Fig. 2, Fig. 3 and 

Fig. 4. 

 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR250452414 Volume 7, Issue 4, July-August 2025 7 

 

 
Figure 2. Classification Accuracy changes for Acquisition Function (Blue), Uncertainity (Orange) 

and Committee (Green) based label selection strategies. Each point depicts the accuracy after the 

‘x’ samples have been chosen, with a total of 10 query samples. Appendix-I 

 

In Figure 2, we can see that the classification accuracy improves drastically (from 58.6% to 96.2%) for 

Uncertainty based sampling. For the Acquisition Function based sampling, the accuracy improves only 

marginally (from 85% to 87.2%). Committee based sampling performs worst in this case, getting to a 

maximum accuracy of 63.1%. However, as we can see in Figure 3, the change in accuracy seems to 

follow a pattern as the number of query samples is increased. 
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Figure 3. Classification Accuracy changes for Acquisition Function (Blue), Uncertainity (Orange) 

and Committee (Green) based label selection strategies. Each point depicts the accuracy after the 

‘x’ samples have been chosen, with a total of 20 query samples. Appendix-I 

 

For 20 query samples, the accuracy for Uncertainty based sampling improves slightly (97.8%) when 

compared to 10 query samples (96.2%). However, Acquisition Function based accuracy improves 

significantly (from 87.2% to 94.8%). There is no impact of increased queries on the accuracy for the 

Committee based sample selection. 
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Figure 4. Classification Accuracy changes for Acquisition Function (Blue), Uncertainity (Orange) 

and Committee (Green) based label selection strategies. Each point depicts the accuracy after the 

‘x’ samples have been chosen, with a total of 30 query samples. Appendix-I 

 

As seen in Figure 4, for 30 sample queries, the performance of uncertainty-based selection remains 

highest (98.7%). However, Acquisition Function based learning performance degrades to 86%. Also, 

Committee based sample selection accuracy improves significantly and gets to 95.8%. This anomalous 

behavior of the Acquisition Function and Committee based selection can be attributed to: 

1. 30 queries are a significant sample size (20% of the total size of 150) 

2. The differences in the randomly selected initial sample that the model was trained on. 

In conclusion, Uncertainity based sample performed best and most consistently for the classification task 

for the IRIS dataset. Now let us look at the result of another experiment I performed with the Titanic 

dataset. 

 

6. Comparative Analysis of Uncertainty and Committee Strategies – Titanic Dataset 

To assess the robustness of active learning strategies in real-world, noisy datasets with mixed data types, 

we extend our comparative analysis to the Titanic dataset. This section contrasts Uncertainty Sampling 

and Query-by-Committee approaches, focusing on how effectively each strategy accelerates model 

learning in a binary classification setting with class imbalance and feature heterogeneity. By applying 

these methods iteratively, we examine the rate of improvement in model accuracy relative to the number 

of labeled instances, providing insights into their practical utility beyond well-structured benchmark 

datasets. Here the committee consists of 2 learners using uncertainity based strategy and Random Forest  
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Classifier internally. 

The Titanic dataset, made popular through Kaggle’s machine learning competitions, contains passenger 

data from the infamous 1912 shipwreck. The task is to predict survival (binary classification: Survived 

or Not) based on a variety of features such as age, gender, passenger class, fare and number of family 

members aboard. With a mix of numerical, categorical and missing values, the Titanic dataset poses 

realistic data preprocessing and modeling challenges, making it a suitable candidate for testing active 

learning strategies in practical scenarios. 

 

 
Figure 5. Classification Accuracy changes for Uncertainity (Blue) and Committee (Orange) based 

label selection strategies. Each point depicts the accuracy after the ‘x’ samples have been chosen, 

with a total of 50 query samples. Appendix-II 

 

As seen in Figure 5, for a binary classification task with a dataset of 891 rows and query size of 50 

(~5%), the accuracy of both Uncertainty and Committee based strategies is comparable. Also, from the 

results it is clear that the accuracy increase in the committee based strategy increased only marginally 

after the 11th query, as compared to the Uncertainty based sampling whose accuracy peaked at around 

21st instance. The overall accuracy of Committee based model was higher (84.6%) as compared to that 

of Uncertainty based model (78.9%). This illustrates that for binary classification where the class sizes 

are skewed (549 survivors vs 342 Non-survivors), Committee based query selection works better than a 

single Uncertainity based model. 
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7. Example of Active Learning: Drone Footage Anomaly Detection in Power Lines 

To illustrate active learning in practice, consider a (hypothetical but plausible) real-world scenario: using 

drone imagery to detect anomalies on electrical power lines. Utilities are increasingly using UAVs with 

cameras to inspect power lines for defects (e.g. broken insulators, vegetation overgrowth, corrosion). A 

standard approach would collect thousands of drone images and train a vision model to classify or 

localize faults. However, anomalous conditions are rare and varied. Labelling all possible anomalies in 

flight footage would be extremely laborious. This is an ideal setting for Active Learning. 

Scenario: A power company deploys a drone along a transmission line corridor, capturing video or still 

frames of towers and lines under various conditions. The goal is to build a model that can detect 

anomalies (e.g. a broken clamp, a leaning pole, vegetation contacting the line). Suppose we start with a 

handful of labeled images covering a few common cases (e.g. 100 images labeled as “normal” and 50 

labeled as “anomaly”). We train an initial convolutional neural network (e.g. YOLOv8, as used in recent 

power-line detection work [9]) on this seed set. 

Now we have a large pool of unlabeled frames from subsequent drone flights. Using an active learning 

pipeline, we apply the current model to this pool and identify the images where the model is least certain 

or predicts an anomaly. For example, the model might output low-confidence detections or conflicting 

class probabilities on some frames. We select a batch of these uncertain frames (e.g. 100 images) and 

send them to expert inspectors for annotation (the “oracle”). The experts label whether each frame 

contains an anomaly and its type/location. These newly labeled images are added to the training set and 

the model is retrained or fine-tuned. 

This loop repeats: each iteration the model becomes more accurate and the annotation budget is focused 

on the remaining difficult cases. The annotators do not waste time labelling frames that are already easy 

(the model is confident) or redundant; instead they concentrate on edge cases. Over several rounds, the 

model might require only a few hundred labeled images to reach high accuracy, whereas a passive 

strategy might have needed thousands. 

As a concrete example, Santos et al. recently trained a YOLOv8 model for detecting power lines in 

UAV imagery, achieving over 90% mAP on visible images and over 96% on thermal images [9]. In an 

active learning extension of this task, one could take a pre-trained YOLO model as the base and then use 

active learning to specifically find and label anomalies. For instance, if the drone captures novel 

vegetation patterns or rare hardware (an outlier not seen in the original dataset), the model’s output 

probabilities would reflect its uncertainty. A simple code-level implementation might use modAL with a 

Keras/TensorFlow YOLO model wrapped as the estimator. 

 

from modAL.models import ActiveLearner 

from modAL.uncertainty import uncertainty_sampling 

from ultralytics import YOLO 

 

# Load a pre-trained YOLOv8 model (PyTorch-based) 

model = YOLO('yolov8x.pt') 

# pretrained weights 

 

# Convert YOLO to an ActiveLearner using a wrapper (hypothetical) 

learner = ActiveLearner(estimator=model, 
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query_strategy= uncertainty_sampling, 

X_training=X_init, y_training=y_init) 

 

# Run active learning loop on new drone frames 

query_idx, query_samples = learner.query(X_unlabeled, n_instances=10) 

# batch of 10 

 

# Send these frames to human experts for annotation 

labels = oracle.annotate(query_samples) 

learner.teach(X_unlabeled[query_idx], labels) 

 

After a few iterations, the YOLO model would have seen representative examples of different anomaly 

types. Uncertain-sample selection might include frames with partial occlusion, unusual angles or 

borderline defects. In this way, we build a robust anomaly detector with minimal labelling. 

Importantly, implementing this system in practice also involves infrastructure. For example, one might 

store drone images in a cloud bucket and trigger the active learning loop whenever new data arrives. A 

typical workflow could use tools like AWS S3 (for storage), SageMaker (for training and inference) and 

SageMaker Ground Truth (for human labelling) as in the AWS blog example [1]. The labelling interface 

would present only the selected images to annotators. Each annotation round might yield only a small 

percentage of images needing labels (those with low confidence). 

In summary, for the drone power-line use case, active learning would operate as follows: 

1. Initial Model: Train an object detector (e.g. YOLOv8) on a small set of labeled normal/anomaly 

images. 

2. Inference: Run the model on new drone footage frames. Collect model outputs and confidence 

scores. 

3. Query Strategy: Use an uncertainty measure (e.g. lowest predicted probability for the detected 

anomaly class) to rank frames. 

4. Annotation: Send the top-k uncertain frames to domain experts to confirm anomaly labels (and 

possibly localization). 

5. Update: Add the new labels to training data and retrain the model. 

6. Repeat: Iterate until performance plateaus or budget is exhausted. 

This pipeline ensures that the human experts’ time is spent labelling only the frames that most improve 

the model, rather than exhaustively labelling every frame of video. In practice, steps 2–4 could be 

automated with a script or pipeline and step 5 (retraining) could be done on a schedule or automatically 

triggered when new labels arrive. End-to-end, this active learning system could build a field-ready 

anomaly detector much faster than a purely passive approach. 

 

8. Results (Time Save, Money Save, Agility) 

Active learning’s main benefit is efficiency: it reduces labelling time and cost while enabling quick 

model improvement. Quantitatively, active learning can dramatically cut the required labeled examples. 

In many reported cases, only a fraction of the full dataset needs annotation. For example, one industry 

report showed that an active learning pipeline enabled over 90% reduction in labelling cost [1]. In the 

AWS case study, an automotive in-cabin sensing project retrained a model with far fewer human labels  
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by automating the bulk of annotation and only asking humans for the hardest examples. 

Time savings are also significant. Rather than waiting for a labelling project to finish before training a 

model (often taking weeks), active learning creates an iterative loop. Each active learning iteration (label 

a batch, retrain, redeploy) can take hours instead of days. This agility means faster time-to-deployment. 

In the AWS example, a job that normally took weeks of annotation was cut to hours of processing [1], 

thanks to automated selection of images for labelling. 

Beyond raw cost and time, active learning improves model agility. If new types of anomalies appear (say 

a new kind of equipment anomaly on the lines), active learning can rapidly incorporate them. The model 

flags any unfamiliar patterns (as low confidence) and queries for labels. 

Some companies have reported 20–30% improvement in accuracy for vision models after deploying 

active learning tools, alongside labelling savings. For example, a testimonial from a robotics company 

noted a 30% annotation error reduction and faster deployment using an active learning platform [10]. 

While such numbers vary by case, the general pattern is clear: focusing expert effort on the most 

informative data gets the most bang for the buck. 

Overall, incorporating active learning in a production pipeline can reduce annotation needs  by order-of-

magnitude while still meeting model targets. Active learning often makes the difference between a 

stalled proof-of-concept and a deployed system. 

 

9. Disadvantages and Limitations of Active Learning 

Despite its advantages, active learning has limitations that while active learning reduces the number of 

labels needed, every queried example still must be labeled by a (often expert) annotator. In domains like 

medical imaging or power systems, such experts are expensive. If the task is complex, each annotation 

can also be time-consuming. Thus, the cost of obtaining each active learning label may be higher than 

that of simpler tasks. In other words, active learning shifts some burden from quantity of labels to 

quality of labels. 

Second, each round of new labels typically requires retraining or fine-tuning the model. This can be 

computationally expensive, especially for large deep learning models. For example, retraining a CNN 

dozens of times can consume significant GPU time, offsetting some of the data savings. In practice, one 

can mitigate this by using incremental learning (warm-starting from the previous model) or by retraining 

only after a batch of new labels rather than each example. 

Third, if the query strategy is poorly chosen, the model may pick uninformative or noisy examples. A 

classic pitfall is sampling bias: uncertainty sampling tends to select borderline or ambiguous examples, 

which may not cover the overall data distribution. Rare classes or outlier conditions might never be 

queried if they do not trigger high uncertainty in the current model. To mitigate this, one can use 

strategies like supervised contrastive active learning (SCAL) and deep feature modeling (DFM) [20]. 

Also, if one class (e.g. “normal” vs. “anomaly”) dominates the data, the model may become 

overconfident on normal samples. An uncertainty strategy may then keep querying only “hard normals” 

and miss anomalies. Moreover, in imbalanced settings the pool of informative samples may be skewed. 

Balakrishnan warns that AL can suffer poor generalization if imbalanced data is not handled carefully 

[2]. Real-world data is often imbalanced, so practitioners must augment uncertainty sampling with other 

heuristics (e.g. cluster-based sampling or always including some minority-class examples). 

Another limitation is that active learning assumes a model (even if weak) exists to measure uncertainty. 

If the initial labeled set is extremely small or not representative, the model’s estimates may be 
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unreliable. In early rounds, the model might select unhelpful queries because it “doesn’t know what it 

doesn’t know.” Cold-starting active learning sometimes requires seeding the model with a few examples 

of each class or careful initialization. 

Real-world deployment issues also arise. Many active learning algorithms are tested on static datasets, 

but a production setting involves data pipelines, user interfaces and possibly streaming data. The 

Weizenbaum study notes that in practical systems, one cannot easily compare different query strategies 

without extra labelling and issues like unknown data distribution can complicate AL’s effectiveness [3]. 

In other words, designing a robust active learning system for the wild is non-trivial: it must deal with 

concept drift, integration with annotation tooling, version control of models/data and potential feedback 

loops. 

Finally, there is no free lunch: active learning only helps if labelling is the bottleneck. If unlabeled data 

is scarce or labels are cheap, traditional training may suffice. If model development time or compute is 

the constraint, the extra complexity of AL might not be worthwhile. 

In summary, active learning’s disadvantages include the ongoing need for human-in-the-loop labelling 

(and thus expert time) [2], increased computational overhead for repeated training, potential sampling 

biases (especially with imbalanced classes) [2][3] and engineering complexity in building an end-to-end 

loop. These limitations mean that while active learning is powerful, it must be applied judiciously and 

often supplemented with other strategies (semi-supervised learning, data augmentation, etc.). 

 

10. Conclusion 

Active learning offers a powerful paradigm for building more accurate AI models with far less labeled 

data. By iteratively selecting and labelling the most informative data points, active learning focuses 

human effort where it matters most. This yields leaner models, faster training cycles and large savings in 

annotation cost. As we have seen, active learning is not a single algorithm but a framework – one that 

incorporates strategies like uncertainty sampling, committee disagreement and diversity to query data. 

Architecturally, a typical system combines a machine learning model, a query engine and human 

annotators in a loop. Modern tools like modAL and cloud ML services can streamline implementation. 

We saw that for multiclass datasets like the IRIS dataset where the data is more or less evenly distributed 

across the classes, uncertainity based sampling works best. However, with binary data where there is a 

significant skew between normal vs anomalous data, as with the Titanic Dataset, a committee of 

uncertainity based learners works much better and converges much faster than a single learner. 

Industry examples (e.g. AWS’s pipeline) suggest that annotation effort can drop by an order of 

magnitude, turning weeks of manual labelling into hours [1] for example like drone-based power-line 

inspection, when Active Learning is applied. 

Nonetheless, active learning has practical limits. It hinges on human oracles, sufficient initial models 

and careful handling of corner cases. It introduces overhead in orchestrating the loop and can struggle 

with skewed data. Researchers continue to explore hybrid approaches (combining active learning with 

semi-supervised or self-supervised learning) to mitigate these issues. 

In conclusion, as one summary notes, active learning enables “smarter models with reduced data-

labelling requirements” [2]. Going forward, as AI systems increasingly operate in dynamic, data-rich 

environments, active learning will be a key tool for scalable, sustainable model building. 
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