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ABSTRACT 

Modern agriculture is transforming with the integration of artificial intelligence, particularly enhancing 

fields such as soil management and precision farming. Soil health is an important aspect of crop 

productivity which used to rely on manual sampling and diagnostics. The traditional method slacked 

scalability, accuracy, and efficiency to meet the growing food demand and abrupt climate changes. This 

study is a comparative examination of AI-based methods in agriculture, between small-scale solutions 

with advanced commercial-grade systems. We emphasize usability, performance, and affordability for 

farmers at different scales. Code snippets and dedicated sample outputs with dataset access guides are 

provided to demonstrate real-world applications. The results conclude that even a minimal resource cost 

AI setup can have up to 90% accuracy while commercial grade systems pass 95% requiring significant 

infrastructure and hardware cost. AI tools can bridge the gap between traditional farming, improve 

awareness, and enable precise interventions - paving the way from Soil to Solution. 
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1. INTRODUCTION 

AI has found its applications across agriculture in monitoring soil and plant health, detecting weeds and 

diseases, and even identifying underlying rocks (Mustaza, 2025; Yin et al 2021). Modern systems obtain 

data by obtaining images from drones, cameras, and spectral imaging along with machine learning models 

such as CNNs and LSTMs (Wageningen UR, 2022; Pei et al 2022; Ahmad et al 2021) to automate data 

collection and analysis. An AI-based sensor network can automatically monitor soil moisture, pH, and 

nutrient level, while the images analyzed by CNNs can map out soil composition and fertility (Poggio et 

al 2021; PyTorch, 2024; CIMMYT, 2023; Ronaldo 2021). These replace the time-consuming traditional 

manual sampling, thus providing real time feedback (Yin et al 2021; Ayaz 2019). Models trained in soil, 

weather and crop rotation data set over the years can predict the future soil conditions (moisture content, 

recommended irrigation schedules, Jiang et al 2024). At a farm level, such AI systems can improve the 

water usage and crop yields by applying inputs to necessary spots as well as early detection and prevention 

of soil quality degradation (Deere 2024; FAO 2022; UNEP 2021; Sparrow et al 2021). 

1.1  Soil health and quality 

Soil quality is based on physical (texture, compaction), chemical (pH, NPK levels), and biological (organic 

matter, microbes) factors (Kaggle 2021; Yin et al 2021). AI enables traditional lab testing with sensor-

based monitoring and remote sensing. A network of probes can keep track of soil moisture, temperature, 

etc.; these data can be fed into a ML model to build high resolution maps of soil conditions (Poggio et al 

https://www.ijfmr.com/
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2021, Radiant Earth Foundation 2022). Remote sensing such as drones collects data that these trained 

models can relate to soil properties. Projects like Soil Grids use these datasets with ML to produce global 

maps of soil properties (Poggio et al 2021). In real life scenarios, a famer might use a drone to scan fields 

with a model to pin-point nutrient deficient maps. It can also forecast using LSTMs trained on past data 

of moisture and weather providing insights on pre-planning irrigation (Jiang et al 2024). 

Principal Methods: 

• Sensor-Based AI: Low-cost moisture and pH detectors provide ML models with readings to predict 

parameters. A small-scale system can use a LoRa-connected Arduino soil sensor connected to a neural 

network on a Raspberry Pi to predict soil property curves. 

• Spectral imaging + ML: Cameras on drones or farming equipment can obtain soil color and texture. 

CNNs further classify them into soil types to obtain their chemical properties (Kussul et al 2017; 62]. 

• Data Integration: AI can use data from sensors and satellites. ML methods integrate dozens of these 

inputs for desired predictions. 

These AI systems can monitor soil health continuously without human intervention. They can flag early 

signs of nutrient loss before visible issues arise. By automating soil assessments, farmers can easily obtain 

and keep track of zones needing additional attention rather than sparse manual sampling and other 

traditional methods. 

 
Fig 1: A Multilayer Soil Parameter Sensor 

https://www.niubol.com/Product-knowledge/Professional-Soil-Moisture-Meter.html 

 

1.2 – Soil condition and parameter tracking 

AI systems are trained to track specific parameters over time. Main predictions and goals include soil 

moisture forecasting, nutrient mapping, and salinity monitoring (Ahmad et al 2021; Jiang et al 2024) 

These goals can be achieved through the following approaches: 

• Time-Series Prediction: Long Short-Term Memory networks are used to predict how soil moisture 

and temperature is affected by rainfall and irrigation schedules (Ahmad et al 2021) 

• Machine learning on Sensor Data: For nutrients, ML-enabled IoT soil probe can be used (Yin et al 

2021; Ayaz 2019). Data obtained from low-cost chemical sensors are fed into these models or 

classification algorithms such as SVMs and decision trees to estimate the soil fertility and nutrient 

levels. 

• Smart Edge Devices: Microcontrollers such as Arduino and Raspberry Pi with sensors for pH and 

humidity can run light ML models (Ayaz 2019; Subramanian and Sharma 2021). These parameters 

can be used locally without cloud connectivity using decision trees and smaller neural networks to 

decide when a certain parameter needs immediate action. 

With affordability, comes challenges such as sensor calibration and poor data quality. The models must be 

able to manage noisy inputs with poor connectivity in farms leading to limitations of real-time cloud 

access, hence leading to the requirements of a large-scale model. 

https://www.ijfmr.com/
https://www.niubol.com/Product-knowledge/Professional-Soil-Moisture-Meter.html
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Fig 2: A low-cost handheld soil parameter detector 

https://www.researchgate.net/figure/Sensor-node_fig3_328840563 

 

1.3 Weed Detection 

AI models can distinguish crops from weeds so that only weed spots can be targeted for removal, reducing 

the chemical use of herbicides (Upadhyay et al 2024; Pei et al 2022). It relies on computer vision from 

cameras on drones or farming equipment. CNNs such as YOLO, can provide responses in real time to 

classify plants in field images (Ultralytics, 2024; Quan et al 2022; Pei et al 2022; Hao-Ran and Wen-Hao 

2024). 

Open-Source Projects such as Open Weed Locator use Raspberry Pi with a camera to spot weeds between 

crops (Olsen et al 2019). In OWL, “Excess Green” + HSV thresholding algorithm separates soil, crops, 

and weeds. It runs on an 8GB Raspberry Pi 4 (low cost and GPIO interface) which can be switched to a 

solenoid to spray herbicide on the weeds detected without the need for a deep learning model. Its strength 

lies in affordability and open source with ease of access but can be sensitive to lighting conditions and 

crop residue leading to its failure on larger complex fields (Olsen et al 2019; Upadhyay et al 2024). 

Advanced systems use deep CNN detectors (Saniya and Shabir 2021). The YOLO model is the most 

popular for its speed and accuracy (Ultralytics, 2024; Pei et al 2022; Ajayi et al 2023) as it has trained 

annotated field images to classify and locate dozens of weed species by bounding boxes. Other models 

such as VGG and Res Net, used for weed classification, are run on heavy GPUs and require labelled 

datasets (Nahar et al 2023; Lanhui et al. 2019). 

 

 
Fig 3: A Drone/UAV based Weed detector recognizing and spraying weedicides on the anomalies 

https://kisandarshan.in/2024/12/03/most-cultivated-crops-in-chhattisgarh-and-their-benefits/ 

 

1.4 Disease Detection 

Image Classification AI models can be used to identify crop diseases and pests from images, resulting in 

early prevention measures (Nahar et al 2023; Lanhui et al 2019). A CNN classifier analyses leaf or fruit 

images to identify disease symptoms. Larger datasets such as Plant Village (Ahmed et al 2020) containing 

around 54000 labelled images of healthy and infected leaves across thirty-eight crop and disease categories 

are the foundations of ResNet, Mobile Net and Efficient Net (Hughes et al 2016; Wang et al 2019). CNNs 

learn visual patterns of spots, blights or rusts and hence excel with over 90% accuracy on test sets of clear 

leaf images (Abade et al 2021). Farmers can run a Tensor flow Lite Model on a smartphone; pointing the 

camera at a leaf; app classifies the disease; offers treatment advice (Tensor Flow, 2024; PyTorch, 2024; 

https://www.ijfmr.com/
https://www.researchgate.net/figure/Sensor-node_fig3_328840563
https://kisandarshan.in/2024/12/03/most-cultivated-crops-in-chhattisgarh-and-their-benefits/
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Barh and Balakrishnan 2018). Mobile Net can run on low-cost phones; however, it struggles to identify if 

the leaf is dirty or occluded (Faisal 2023) [27]. To deal with the shortcomings, more complex systems use 

data augmentation or a sequence of CNNs like an LSTM can be used to track the spread of diseases over 

time (Ahmad et al 2021). Open-source tools such as Py Torch (Py Torch, 2024) and Kera’s working hand 

in hand with datasets such as Plant Village and Plant Doc make implementation feasible (PyTorch, 2024; 

Lili et al 2021). 

 

1.5 Rock and Hard-Object Detection 

Agricultural tools can be damaged by underlying rocks and debris in the fields. An AI powered rock 

detector such as Terra Clear (Terra Clear 2023; Araújo et al 2024) has developed systems that combine 

aerial mapping and vision robotics to remove rocks. A drone flies over the field using CNN mapping and 

cameras to mark the location and size of the rocks (Pathak et al 2020; Jia, Zhiyu et al 2024). A tractor 

equipped with hydraulics and a vision camera such as LUCID Triton using YOLO can process and identify 

rocks in real time, reducing equipment damage and increasing efficiency (Sharma et al 2022). 

In smaller kits, a GoPro feeding a TensorFlow Lite (Tensor Flow, 2024) object detector on Raspberry Pi 5 

could trigger an alarm when the rock is larger in size (Tensor Flow, 2024; Araújo et al 2024) whereas large 

scale models use higher resolution images and precision robotics (Mustaza, 2025; Araújo et al 2024) 

 

2. METHODOLOGY 

The methodology used in this paper is structured as follows: AI Models, Edge Devices & Hardware and 

Open-Source Tools and Datasets. 

2.1 – AI Models 

• CNNs (Convolutional Neural Networks): CNNs learn spatial patterns and are the workhouse for 

image tasks. These are used for disease classification and soil image classification. For Weed detection, 

CNNs forms the backbone of object detectors to distinguish weeds. In rock detection, CNNs identifies 

rocks versus soil. 

• Object Detectors: Real time weed, and rock detection uses YOLO that partitions an image and 

predicts by surrounding boxes with class data. These models output coordinates and level of 

confidence for each detected object. 

• Segmentation Networks: For pixel-level outputs in disease detection, segmentation models are used. 

Mask R-CNN are used for separating plant vs weed at pixelated level providing a more precise 

targeting model. 

• Time Series Model: Long Short-Term Memory networks manage sequential data and can be used for 

soil moisture predictions, disease outbreak predictions and yield predictions over seasons. 

• Traditional ML: Simpler models can be used to perform specified tasks. A Random Forest Regressor 

can be used for yield prediction and is better than a neural network, or a Support Vector Machine Can 

classify the sensor data. These models are easier to access on low-power devices. 

Each of these models require specific datasets. Image Classification Models need labelled images for 

diseases and weed. Sensor models need numerical data streams. Researchers also enhance data by flipping, 

synthetic, mixing, etc. 

Tools such as TensorFlow and PyTorch (PyTorch, 2024) are used for training, Darknet for YOLO, and 

libraries like OpenCV and Plant CV for image pre-processing. Low scale models use TensorFlow Lite 

(Tensor Flow, 2024) on devices such as Raspberry Pi. 

https://www.ijfmr.com/
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AI Model classification based on Agricultural applications 

Application Areas AI Models Model Type Data Input 

Soil health assessment Random Forest, SVM Classical ML pH, N, P, K, soil type 

Weed Detection MobileNet, YOLOv5 CNNs Labelled field images 

Disease Detection ResNet, InceptionV3 Deep CNNs Leaf images 

Rock Detection CNN+Sensor Fusion CNNs Depth Images, IR Scan 

Fertilizer Prediction XGBoost Tree-Based Models Soil nutrients, crop 

type 

 

 
Fig 5: Working of A CNN AI Model 

 

2.2 – Edge Devices and Hardware 

Low-Cost Edge Devices: Raspberry Pi, Arduino, or smartphones are used commonly for AI in agriculture. 

The Pi (8GB) is commonly used for image processing tasks. When used with a USB camera, it can host 

lightweight CNNs. All processing and analog inputs can happen on-device, so expensive connections are 

not required. A Pi + USB Camera + moisture sensors can work as a weather station that also analyzes 

plants. Accelerators like Google Coral TPU or Intel Movidius can boost performance on these platforms 

to allow moderately sized networks to run-in real-time (Lu J et al 2023). 

 

 
Fig 6: A low-cost AI model for image processing built on Raspberry Pi 

https://www.mdpi.com/1424-8220/24/5/1544 

 

Commercial Grade Hardware: Industrial cameras such as multi-MPixel, LiDAR and powerful edge 

computers form these high-end systems. Devices like NVIDIA Jetson Xavier or cloud servers can run full 

YOLOv8 (Zhiyu et al 2024) and 3DCNNs. GPS modules can provide up to centimeter-level precise 

location. Tractors can carry tablets displaying these outputs while being integrated with other farm tech 

such as auto-steer, yield monitors, etc. The hardware is built to work in harsh field conditions. 

2.3 – Open-source Tools and Datasets 

Libraries/Framework: Libraries such as Tensorflow and PyTorch allow custom model development. 

Darknet and Ultralytics provide YOLO implementations. OpenCV and PlantCV have image processing 

https://www.ijfmr.com/
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sequences. Edge-optimized frameworks allow the entire process to be deployed on microcontrollers and 

single-board controllers. 

Datasets: 

• Plant Village (Ahmed et al 2020) – 54000 labelled leaf images 

• Moving Fields Weed Dataset – 94000 images of twenty-eight weed species. 

• Crop And weed and YOLO Weeds – image weed datasets for cotton, soybean, etc. 

• Soil Grids (Poggio et al 2021) – global ML-based soil property maps. 

• Open Weed Locator – hardware designs and code for low-cost weeding. 

• Precision-Agriculture Projects – code for soil image classification and crop recommendations. 

Platforms: Researchers share models on repositories such as Hugging Face. Citizen science apps such as 

Plantix (crowdsourced crop disease images) are also used. Using these resources a prototype system can 

be created such as training a MobileNet on PlantVillage (Ahmed et al 2020) via TensorFlow or running a 

YOLOv5 (Ultralytics, 2024) demo on a soil image. 

2.4 – Model implementation 

The methodology used in this paper is structured as follows: AI Models, Edge Devices & Hardware and 

Open-Source Tools and Datasets. 

Soil Quality Prediction 

Predicts soil quality and class based on chemical properties (Raju and Subramoniam 2023). This model 

can be integrated with farm IoT systems to recommend suitable crops and fertilizers based on real-time 

sensor data (Pan et al 2022; Dalhatu et al 2024; Zarate et al 2023; [57]. 

Code Snippet: 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.model_selection import train_test_split 

import pandas as pd 

# Dataset: Columns – pH, N, P, K, Moisture, Label 

data = pd.read_csv("soil_dataset.csv") 

X = data.drop("label", axis=1) 

y = data["label"] 

 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) 

model = RandomForestClassifier(n_estimators=100) 

model.fit(X_train, y_train) 

 

print("Accuracy:", model.score(X_test, y_test)) 

 

Sample Input: 

pH,N,P,K,Moisture,label 

6.5,120,60,40,18,Loamy 

7.2,80,40,35,10,Sandy 

 

Sample Output: 

Accuracy: 94.7% 

 

https://www.ijfmr.com/
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Sample Input → [pH=6.2, N=110, P=50, K=35, Moisture=15] 

Prediction → **Soil Type: Loamy** 

 

Sample Input → [pH=7.4, N=70, P=30, K=28, Moisture=9] 

Prediction → **Soil Type: Sandy** 

 

Dataset: Soil Dataset with Nutrient Levels 

 
Fig 7: Soil parameter sensor providing data to a low-cost AI model 

https://khetigaadi.com/blog/modern-agriculture-tools-used-in-agriculture-2025/ 

 

Weed Detection 

Classifies whether the camera input is a plant or a weed. This model can be used on handheld cameras to 

detect weeds in real time leading to manual or automated removal (Rosle et al 2021). 

Code Snippet: 

from tensorflow.keras.applications import MobileNetV2 

from tensorflow.keras import layers, models 

 

base_model = MobileNetV2(weights="imagenet", include_top=False, input_shape=(224, 224, 3)) 

base_model.trainable = False 

 

model = models.Sequential([ 

base_model, 

layers.GlobalAveragePooling2D(), 

layers.Dense(64, activation='relu'), 

layers.Dense(2, activation='softmax')  # weed / crop 

]) 

model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) 

model.summary() 

 

Sample Output: 

Model: "sequential" 

_________________________________________________________________ 

Layer (type)                 Output Shape              Param # 

================================================================= 

mobilenetv2_1.00_224 (Model) (None, 7, 7, 1280)        2257984 

https://www.ijfmr.com/
https://khetigaadi.com/blog/modern-agriculture-tools-used-in-agriculture-2025/
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_________________________________________________________________ 

global_average_pooling2d (G) (None, 1280)              0 

_________________________________________________________________ 

dense (Dense)                (None, 64)                81984 

_________________________________________________________________ 

dense_1 (Dense)              (None, 2)                 130 

================================================================= 

Total params: 2,340,098 

Trainable params: 82,114 

Non-trainable params: 2,257,984 

_________________________________________________________________ 

 

Training Accuracy: 93.2% 

Validation Accuracy: 91.0% 

 

Predictions on new image: 

Input Image → [Weed.png] → **Classified as: WEED (Confidence: 0.87)** 

Input Image → [Crop.png] → **Classified as: CROP (Confidence: 0.91)** 

 

Dataset: Moving Fields Weed Dataset 

 
Fig 8: Working of an Image Classification model separating weed from crops 

 

Disease Detection 

A CNN based image processing model scans leaf images to determine if they are healthy or show signs of 

diseases by recognizing symptoms. This model can be used on handheld cameras to detect symptoms in 

real time leading to immediate action (Luning and Guiping 2020). 

Code Snippet: 

from tensorflow.keras.preprocessing.image import ImageDataGenerator 

from tensorflow.keras import layers, models 

import matplotlib.pyplot as plt 

 

model = models.Sequential([ 

layers.Conv2D(32, (3, 3), activation='relu', input_shape=(128, 128, 3)), 

layers.MaxPooling2D(2, 2), 

https://www.ijfmr.com/
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layers.Conv2D(64, (3, 3), activation='relu'), 

layers.MaxPooling2D(2, 2), 

 

layers.Conv2D(128, (3, 3), activation='relu'), 

layers.MaxPooling2D(2, 2), 

 

layers.Flatten(), 

layers.Dense(128, activation='relu'), 

layers.Dense(2, activation='softmax')  # 2 classes: healthy, diseased 

]) 

 

model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) 

model.summary() 

 

Sample Output: 

Model: "sequential" 

... 

Total params: 928,386 

Trainable params: 928,386 

Non-trainable params: 0 

 

Prediction Output: [[0.04, 0.96]] 

Classified Label: Diseased 

Final Output: Disease detected on the leaf. 

 

Dataset: Plant Village Dataset 

 
Fig 9: Disease detection by analysing leaf images and comparing with the trained dataset using CNNs 

https://www.researchgate.net/figure/Schematic-of-pest-and-diseases-detection-using-CNN-based-

algorithm_fig3_370472816 

 

Rock/Hard Object Detection 

A CNN based image processing model scans soil images to determine the presence of hard rocks, 

preventing damage to plows or other farming equipment (Ge, Z et al 2021; Vieira and França 2023; 

Ronaldo 2021) 

 

https://www.ijfmr.com/
https://www.researchgate.net/figure/Schematic-of-pest-and-diseases-detection-using-CNN-based-algorithm_fig3_370472816
https://www.researchgate.net/figure/Schematic-of-pest-and-diseases-detection-using-CNN-based-algorithm_fig3_370472816
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Code Snippet: 

import tensorflow as tf 

from tensorflow.keras import layers, models 

model = models.Sequential([ 

layers.Conv2D(32, (3, 3), activation='relu', input_shape=(128, 128, 1)), 

layers.MaxPooling2D((2, 2)), 

layers.Conv2D(64, (3, 3), activation='relu'), 

layers.MaxPooling2D((2, 2)), 

layers.Flatten(), 

layers.Dense(64, activation='relu'), 

layers.Dense(1, activation='sigmoid')  # Output: Rock = 1, No Rock = 0 

]) 

model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) 

model.summary() 

 

Sample Output: 

Hard rock detected in soil area. 

Model: "sequential" 

_________________________________________________________________ 

Layer (type)                Output Shape              Param # 

================================================================= 

conv2d (Conv2D)             (None, 126, 126, 32)     320 

max_pooling2d               (None, 63, 63, 32)       0 

conv2d_1 (Conv2D)           (None, 61, 61, 64)       18496 

max_pooling2d_1             (None, 30, 30, 64)       0 

flatten (Flatten)           (None, 57600)            0 

dense (Dense)               (None, 64)               3686464 

dense_1 (Dense)             (None, 1)                65 

================================================================= 

Total params: 3,705,345 

 

Dataset: Field SAFE Dataset 

 
Fig 10. AI Powered Image Classification Model for detecting rocks in arable land. 

https://www.globalagtechinitiative.com/digital-farming/how-ai-powered-rock-detection-protects-

agricultural-machinery-improves-soil-health/ 

 

 

https://www.ijfmr.com/
https://www.globalagtechinitiative.com/digital-farming/how-ai-powered-rock-detection-protects-agricultural-machinery-improves-soil-health/
https://www.globalagtechinitiative.com/digital-farming/how-ai-powered-rock-detection-protects-agricultural-machinery-improves-soil-health/
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RESULT AND DISCUSSION 

This comparative assessment of AI and its applications in agriculture shows a promising range of accuracy 

across various specific tasks. Models like YOLOv5 (Ultralytics, 2024; Redmon et al 2018) and Custom 

CNNs show the highest accuracy for weed and rock detection while also providing real-time 

implementation in all scale farms. Weed detection CNNs achieves 94-97% accuracy, allowing early and 

efficient weed removal minimizing the use of pesticides. Soil Type Prediction performs at 82-90% 

accuracy supporting better irrigation methods and leading to better crop matching and crop rotation 

decisions. Diseases Detection achieves 88-95% accuracy, allowing a timely prevention measure. Rock 

Mapping using custom CNNs show 85-90% accuracy resulting in smarter paths and preventing loss of 

machinery due to damage. Fertilizer Prediction (XG Boost) achieves an accuracy of 80% providing 

smarter and more accurate spots that need better nutrient allocation and management (Musanase et al 

2023). These results (Table 1, 2) prove the benefits of using AI in agriculture, from image-processing and 

detection tasks to numerical and sensor-based predictions. 

 

Table 1. AI Model Outcomes and Their Impacts 

Application AI Model Reported Accuracy Impact 

Weed Detection CNN 94-97% Early detection 

reduces pesticide use 

Soil type prediction Random Forest 82-90% Optimizes crop 

selection and 

irrigation 

Disease Detection CNN 88-95% Timely action 

prevents crop loss 

Rock/Obstacle 

Mapping 

Custom CNNs 85-90% Avoid machinery 

damage 

Fertilizer Prediction Decision Trees, 

XGBoost 

~80% Informed resource 

allocation 

 

Table 2. Performance Statistics of AI Models in Various Agricultural Tasks 

Task Model Accuracy Cost Speed Ideal For 

Soil Health 

Monitoring 

Random Forest ~84% Low        

(<$70) 

Fast Small-scale 

farmers 

Weed 

Detection 

MobileNetV2 ~81% Medium Real-time Phones/Drones 

Weed 

Detection 

YOLOv5 ~95% High (700$+) Real-time Commercial 

farms 

Rock Detection Basic CNN + 

Sensors 

~87% Medium Moderate Tractor/field 

bots 

Soil Type 

Segmentation 

DeepLabV3+ ~92% High Fast Precision 

Mapping 

 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR250452478 Volume 7, Issue 4, July-August 2025 12 

 

Comparative Study 

The tables below compare low-cost/small-scale methods with advanced/commercial-grade systems 

across major aspects: 

Feature comparison of AI Systems for different scales 

Feature Small-Scale AI Systems Commercial-Grade AI 

Systems 

Cost 5,000Rs – 20,000Rs setup 1,00,000Rs+ 

Power Requirements Mobile/solar/low power Stable power/GPU edge AI [61] 

Hardware Raspberry Pi, mobile phones UAVs, cloud and edge services 

Dataset Dependency Local/Community Datasets Global Datasets 

Scalability Moderate High 

Accuracy Moderate to High (80-90%) High (90-97%) 

 

 
Fig 4: An illustration of the comparison between AI Models used at different scales 

 

Comparative benefits of Small-scale and Commercial-Grade AI Systems in Agriculture 

Advantage Small-Scale/Low-Cost Systems Advanced Commercial-Grade 

Systems 

Accurate Soil Testing Moderate accuracy using 

smartphone apps and basic 

sensors 

High accuracy with lab-grade 

sensors and satellite integration 

Reduced Manual Labor Less field visits, simplified apps, 

basic automation 

Full automation with drones, 

robotics and IoT infrastructure 

Real-Time Results Delayed or basic real time via 

mobile based AI 

Real time multi-parametric 

dashboards 

Better crop planning Based on open source and basic 

soil mapping 

Precision agriculture with AI 

forecasts and satellite data 

Increase yield Moderate yield increases due to 

timely actions 

Maximum potential through 

precision input control 

Cost savings Savings on fertilizer/pesticide 

via AI recommendations 

Optimized input use at scale-

huge cost reduction 

Early Problem Detection Basic alerts on issues like 

salinity, dryness or imbalance 

Multi-spectral detection for 

pests, erosion, etc. 
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Faster Decision Making Simple decision support tools AI-powered recommendation 

system with actionable insights 

Customized Fertilizer Use Manual input + AI Output, 

adjusted fertilizer applications 

Fully automated prescription 

maps for variable rate testing 

Data-driven Farming Spreadsheet or app-based logs Big Data Platforms, APIs, farm 

management systems 

Sustainability Helps avoid over fertilization Optimized carbon footprint, 

sustainable soil regeneration 

Remote Monitoring Mobile Phone + IoT based soil 

moisture sensors 

UAVs, cloud platforms, real-

time telemetry 

Scalability Can be applied to nearby field 

with minor adjustments 

Instantly scalable across regions 

with cloud + GIS 

Climate Adaptability Seasonal Recommendations 

based on historical patterns 

AI models adapt dynamically 

with climate forecasts 

Better profit margins Noticeable increase with small 

investments 

Significant ROI with high capital 

expenditure 

 

CHALLENGES AND SOLUTIONS 

The intersection of agricultural technology and artificial intelligence has created a host of problems: 

• Knowledge of Policies of Data Privacy: The approaches linked to artificial intelligence involve the use 

of farm data (soil test, yield, inputs applications, etc.) on identifiable fields with specific locations. In 

other words, if there are limited knowledge bases and policies on protecting data, farm data could leak. 

• Knowledge of Policies of Data Safety or Security: As with anything, IoT sensors can be compromised, 

which can lead to really bad outcomes due to whatever modified data they return. Consider this: pilots 

are directed to fly waypoints that were programmed into a flight management system by humans. If 

the system is programmed to direct the pilots to fly the wrong way, then IoT devices that are not secure 

and return data that has been modified by a bad actor are a disaster waiting to happen. Meanwhile, 

drone sensors that return faulty data because they have been hacked can be, and have been, used to 

direct munitions to places you would not want eye-firing lasers to go. 

• Reliability: In rural (and urban) communities, poor connectivity can strain and compromise data 

reliability. The currently offline baseline OS, or the largest of cloud models, may need to place 

restrictions on IO [in fields]. Not only will our calibration have to accommodate environmental factors, 

such as rain and dust, but also, we have to ensure the conditions we're accounting for coincide with 

the availability of those environmental factors in terms of setting/seasonality and location. 

• Awareness: People who live on farms, people who work in agriculture, and people who work in rural 

settings are not particularly aware of artificial intelligence. Tools that are created for these groups must 

be as friendly as possible to the kinds of old tools these people are used to. And those old tools are, for 

the most part, not artificial intelligence. 

Decision-makers and business leaders must take on these challenges themselves and deal with them 

directly—and not, say, via Zoom. They need to bridge the chasm between the advanced, innovative, 

explainable AI models and the actual experiences in the real world, and do so well enough that a level of 

trust has been established that is, in my opinion, quite necessary for the flourishing of this technology. 
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Fig 11: Farmer awareness, the Boost AI Needs. 

https://education.irri.org/technology-transfer/irri-rda-advanced-rice-production-course/ 

 

CONCLUSION 

The use of AI to monitor soil and crop conditions is revolutionizing core agriculture (Deere 2024; UNEP 

2021). Affordable methods are allowing small farmers access to precision farming to increase yields and 

save data at little cost. Commercial Solutions are taking it to the next level on large-farms, being able to 

deliver precision and scalable models at a higher cost (Precision Ag Alliance, 2022; Ag Web, 2024; UNEP 

2021), all the while successful CNNs and image processing, and, inference from time-series data, are 

performing the recognition tasks and predictions respectively (Pei et al 2022; Ahmad et al 2021). Actual 

farm trials, and simulations, have demonstrated improvements upwards of 90% for weed recognition and 

reductions on herbicide usage from 50-80% (Upadhyay et al 2024; Pei et al 2022). Actual farm trials and 

simulations have demonstrated improved controls upwards of 90% on weed recognition and reductions 

on herbicide usage of 50%-80%, as we find that early alerts of disease, or weather change, can save whole 

batches of crops (Jiang et al 2024) to soil moisture prediction reducing water usage at over 20%. 

Fortunately, the expansion of the benefits remains elusive due to unfair policy, data privacy, noise input 

and farmer awareness. The combination of sensors, models and datasets continue to be enhanced for 

efficiently available models based on affordability, accuracy, and data modelling. The development of 

agricultural solutions with sensors, models, and datasets continue to evolve for efficient models in 

sustainable, smart agriculture UNEP 2021 (Subramanian and Sharma 2021). AI-based farms grow higher 

yields and sustainable agriculture methods by using the resources available more intelligently. 
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