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Abstract 

This paper provides a comprehensive review of advancements in plant disease detection, moving from 

traditional to modern and AI-driven approaches. It highlights that traditional methods, such as visual 

inspection, microbiological isolation, culturing, and molecular and serological techniques, are often 

limited by being time-consuming, subjective, or requiring specialized expertise and lab processing. These 

limitations can lead to significant crop yield losses, economic setbacks, and threats to food security. 

The review then discusses modern, non-destructive sensor technologies, which are crucial for detecting 

diseases in their early stages, often before visible symptoms appear. These technologies include: 

• Hyperspectral Imaging (HSI): Captures detailed "spectral fingerprints" of plants to detect subtle 

physiological changes. 

• Multispectral Imaging (MSI): Uses a limited number of spectral bands, often including near-infrared 

(NIR), to identify abnormal plant conditions more cost-effectively than HSI. 

• Thermal Imaging: Detects temperature fluctuations in plants caused by physiological changes during 

infection. 

• Chlorophyll Fluorescence Imaging (CFI): A non-invasive technique that detects early stress responses 

by analyzing chlorophyll emissions. 

• LiDAR and Drones: Used for aerial analysis of crop health, enabling early diagnosis and monitoring 

of large agricultural areas. 

Finally, the paper details how Artificial Intelligence (AI) and Deep Learning (DL) have revolutionized 

this field through automated, highly accurate diagnostic capabilities. The document covers various deep 

learning architectures, including Convolutional Neural Networks (CNNs) like AlexNet, VGG, ResNet, 

and YOLO, which are used for image classification, feature extraction, and real-time disease localization. 

It also mentions the use of semantic segmentation models like U-Net for pixel-level disease mapping, and 

the role of transfer learning and explainable AI (XAI) in improving model performance and transparency. 

The review concludes with an emerging paradigm of federated learning for decentralized, privacy-

preserving model training. 

 

1. Introduction 

The health of global agriculture is inextricably linked to effective plant disease management. Early and 

accurate detection and diagnosis of plant diseases are paramount for efficient plant production, leading to 

a substantial reduction in both qualitative and quantitative crop yield losses. This proactive approach is 

critical for mitigating the most significant challenge in crop production, which can otherwise result in 
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considerable economic setbacks. 

The escalating global population, projected to reach 9.3 billion by 2050, necessitates a 50% increase in 

food production to meet demand. However, plant pathogens and pests currently cause up to 40% yield 

losses in major staple crops such as maize, rice, and wheat, translating to an astonishing annual worldwide 

economic loss of approximately US$220 billion. Specific analyses indicate estimated yield losses of 

21.5% for wheat, 30.3% for rice, and 22.6% for maize. Beyond direct yield impacts, plant health is 

intrinsically tied to environmental sustainability and overall economic stability. Compromised plant health 

can trigger reduced yields, inflated production costs for farmers, higher food prices for consumers, and 

even food shortages, creating cascading negative effects on the broader economy. The transboundary 

movement of plants and plant products also risks introducing invasive pests and diseases, further 

disrupting trade and causing economic losses. Neglecting plant health has long-term consequences, 

including biodiversity loss, ecosystem degradation, and environmental imbalances. Emerging plant 

diseases pose persistent threats, particularly devastating in limited-resource countries where they 

exacerbate existing challenges in crop production. The increasing influence of climate change, affecting 

temperature, atmospheric CO2 concentration, and water availability, is a primary concern for plant 

pathologists, as it directly impacts plant, pathogen, and disease development. This environmental shift 

contributes to pathogen and vector expansion, as well as the emergence and re-emergence of endemic 

diseases. 

The profound economic losses and direct threat to global food security underscore that plant disease 

detection is not merely an agricultural optimization problem. It stands as a fundamental component of 

global stability, public health (considering the potential for mycotoxins to affect food safety ), and poverty 

alleviation. This elevates the field’s importance from a technical challenge to a societal imperative, 

highlighting research and development in this area as critical investments in global resilience and human 

well-being. Furthermore, the identification of climate change as a critical factor influencing plant, 

pathogen, and disease development indicates that the problem of plant disease is dynamic and likely 

intensifying. This suggests that future plant disease detection systems must integrate climate data and 

predictive  odelling to anticipate and adapt to evolving disease patterns, necessitating a more holistic, 

interdisciplinary approach combining advanced sensing with environmental science and predictive 

analytics. 

Historically, plant disease diagnosis relied heavily on traditional methods such as visual inspection by 

farmers and agricultural experts. This involved identifying characteristic plant disease symptoms like 

lesions, blight, galls, or wilts, or visible signs of pathogens such as mycelium or spores. Microbiological 

methods, involving pathogen isolation on selective, artificial media, and molecular and serological 

methods, have also been employed by plant protection services and in research and industrial 

development. The devastating impact of historical neglect of plant health, exemplified by the Irish Potato 

Famine in the mid-19th century due to widespread potato late blight, underscores the critical need for 

effective detection. The historical reliance on time-consuming, expertise-dependent, and resource-

intensive methods, as evidenced by farmers’ persistent visual examinations , presents inherent limitations. 

The subsequent emergence of automated and semi-automated systems that are faster, more accurate, and 

less expensive signifies a fundamental shift. This progression represents a move from human-centric, 

subjective, and often delayed diagnostic processes to machine-driven, objective, and rapid detection, 

driven by the necessity to overcome the inefficiencies and limitations of traditional approaches for more 

effective agricultural protection. 
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2. Traditional Approaches to Plant Disease Detection 

This section delves into the established methods of plant disease detection, detailing their mechanisms and 

critically evaluating their inherent strengths and, more importantly, their limitations, setting the stage for 

the necessity of modern advancements. 

Visual Inspection and Symptom-Based Diagnosis 

Visual inspection is a foundational technique in plant disease diagnosis, relying on careful observation of 

physical characteristics to identify symptoms of disease, pest damage, or nutrient deficiencies. Farmers, 

agricultural practitioners, and plant pathologists traditionally identify diseases based on characteristic 

plant disease symptoms such as leaf spots, blights, stem cankers, root rot, or abnormal growth patterns 

like stunting or distortion. They also look for visible signs of a pathogen, such as uredinospores or 

mycelium. This method is crucial for early detection by allowing growers to observe physical symptoms 

like discoloration or wilting, signaling potential issues for timely management. It provides immediate 

feedback without complex laboratory tests. 

Despite its immediacy, visual inspection is inherently subjective and may not always be accurate, 

especially for diseases with similar symptoms or those exhibiting inconspicuous signs. It is time-

consuming and labor-intensive, particularly in large fields, and prone to human error, leading to delayed 

interventions. In the worst-case scenario, an undetected infection can cause an entire crop to decline, 

severely impacting yield. While visual inspection holds historical significance and remains a preliminary 

diagnostic step, its inherent flaws in scalability, objectivity, and sensitivity to early symptoms render it 

insufficient as a primary method for modern agricultural demands. This clearly demonstrates the urgent 

need for automated, objective, and more sensitive detection technologies. 

Microbiological Methods: Isolation and Culturing 

These methods involve the isolation of pathogens on selective, artificial media, followed by culturing to 

grow and identify the causative agent. The process typically includes collecting infected plant tissue, 

surface-sterilizing it to remove contaminants, plating the tissue on a nutrient medium (e.g., agar), 

incubating the plates to allow pathogen growth, and finally identifying the pathogen based on its 

morphology and growth characteristics. These conventional techniques are employed by plant protection 

services and in both research and industrial development for pathogen identification. 

While capable of confirming specific pathogens, isolation and culturing are time-consuming and labor-

intensive, requiring specialized laboratory expertise and resources. Their slow turnaround time limits their 

utility for rapid, field-scale interventions, often delaying necessary actions. These methods offer definitive 

pathogen identification, indicating high accuracy. However, their slow nature and reliance on expert labor 

limit their practicality for rapid, widespread disease management, especially in large-scale agricultural 

settings. This highlights a critical trade-off, where precision comes at the cost of speed and accessibility. 

Molecular and Serological Techniques 

Molecular and serological methods are readily applied for the diagnosis and detection of plant pathogens, 

used by plant protection services and in research and industrial development. Serological tests are based 

on the specific reaction of antibodies with antigens. A wide range of formats exists for detecting plant 

viruses, including traditional methods like tube precipitin and gel diffusion, and more modern techniques 

such as Enzyme-Linked Immunosorbent Assay (ELISA). ELISA is highly economical in antiserum use, 

adaptable for large-scale testing, and enables quantitative measurement. Simpler, on-site methods like dot 

immunobinding assay (DIBA), tissue blotting immunoassay (TBIA), and lateral flow assay (LFA) or dip 

stick assay are also available, with LFA being particularly notable for its quick, lab-independent, and user-
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friendly nature. 

Real-time Polymerase Chain Reaction (qPCR) is currently considered the “gold standard” method for 

detecting plant pathogens. This technique amplifies and simultaneously quantifies targeted DNA 

molecules by monitoring a fluorescent signal that increases proportionally to the number of amplicons. 

qPCR allows for accurate, reliable, and high-throughput quantification of pathogen DNA in various 

environmental samples, including host tissues, soil, water, and air. These molecular diagnostic tests offer 

significant advantages over conventional methods, including the ability to detect organisms without prior 

culturing, faster turn-around times, potential for high-throughput analysis, and the capacity to identify 

pathogen species or strains, including fungicide resistance alleles. The designation of qPCR as the “gold 

standard” due to its accuracy, reliability, and quantification capabilities, alongside ELISA’s scalability 

and LFA’s on-site application, establishes a high performance benchmark. These methods represent a 

clear progression towards more precise and efficient laboratory-based diagnostic tools. However, they still 

typically require sample collection and laboratory processing, which can be a bottleneck for true real-time, 

large-scale field application. The ultimate goal for advanced sensor and AI methods is to achieve 

comparable diagnostic power and specificity in situ or remotely, thereby complementing and extending 

the reach of these lab-based approaches. 

Inherent Limitations and Challenges of Conventional Methods 

Traditional plant disease detection methods, including visual inspection and laboratory-based techniques, 

are consistently characterized by their time-consuming nature, reliance on specialized expertise, and high 

resource intensity. Visual inspection suffers from subjectivity and variability, often failing to accurately 

diagnose diseases, especially those with similar or inconspicuous symptoms. This can lead to undetected 

infections that cause an entire crop to decline, severely impacting yield. Microbiological isolation and 

culturing, while accurate, are labor-intensive and time-consuming, requiring significant expertise and 

specialized facilities. Overall, these methods exhibit limitations in sensitivity and specificity compared to 

modern techniques. Furthermore, if not applied in the early stages of pathogenesis, traditional techniques 

are often ineffective in restricting and managing disease spread. 

The collective shortcomings of traditional methods, which lead to significant economic losses , 

inefficiencies , and delayed interventions , pose a direct threat to food security and farm profitability. The 

inability to detect diseases at their earliest stages or when symptoms are inconspicuous represents a critical 

failure point, potentially resulting in widespread crop loss. This is not merely a matter of convenience but 

a severe constraint on agricultural sustainability. The development and adoption of modern, automated 

detection techniques are thus a crucial strategic response to these economic and food security implications, 

providing a compelling justification for continued investment in AI and sensor-based systems. 

 

Table 1: Comparison of Traditional Plant Disease Detection Methods 

Method Name Principle/Mechanism Key Advantages Key Limitations Relevant 

Sources 

Visual Inspection Symptom observation 

(e.g., lesions, 

discoloration) 

Low cost, immediate 

feedback, no 

specialized equipment 

Subjective, variable 

accuracy, time-consuming, 

labor-intensive, expertise-

dependent, misses 

early/inconspicuous 

symptoms, prone to human 
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Method Name Principle/Mechanism Key Advantages Key Limitations Relevant 

Sources 

error, poor scalability 

Microbiological 

(Isolation & 

Culturing) 

Pathogen growth on 

selective media 

Confirms pathogen 

identity, can isolate 

specific strains 

Time-consuming, labor-

intensive, requires 

specialized laboratory 

expertise and facilities, slow 

turnaround time, limited for 

rapid field-scale 

interventions 

 

Serological (e.g., 

ELISA, LFA) 

Antibody-antigen 

reaction 

Adaptable for large-

scale testing, 

economical, 

quantitative, on-site 

(LFA) 

Requires specific antibodies, 

may not detect all pathogens, 

can be less sensitive than 

molecular methods, LFA 

suitable for high-

concentration pathogens 

 

Molecular (e.g., 

PCR, qPCR) 

DNA/RNA 

amplification and 

quantification 

High accuracy, high 

sensitivity, high-

throughput, faster 

turnaround, quantifies 

pathogen load, 

identifies 

species/strains, detects 

fungicide resistance 

alleles 

Requires specialized 

equipment and expertise, 

initial setup cost, sample 

collection and lab processing 

still a bottleneck for true real-

time field use 

 

 

3. Advanced Sensor-Based Technologies for Early Detection 

This section explores the cutting-edge non-destructive sensor technologies that have revolutionized plant 

disease detection, detailing their operational principles, data analysis techniques, and diverse applications 

in modern agriculture. 

Overview of Non-Destructive Optical Sensing Techniques 

Optical techniques, including RGB imaging, multi- and hyperspectral sensors, thermography, and 

chlorophyll fluorescence, have demonstrated significant potential in developing automated, objective, and 

reproducible detection systems. These systems are crucial for the identification and quantification of plant 

diseases at early time points in epidemics, often before visible symptoms appear. These non-destructive, 

sensor-based methods complement and expand upon traditional visual and molecular approaches to plant 

disease assessment. They enable the detection of early physiological changes in plants caused by biotic 

stresses, such as modifications in tissue color, leaf shape, transpiration rate, canopy morphology, and plant 

density, as well as variations in the interaction of solar radiation with plants. The most relevant areas of 

application for sensor-based analyses are precision agriculture and plant phenotyping. Precision 

agriculture focuses on examining spatial heterogeneities within crop stands, while plant phenotyping 

assesses the appearance and performance of a genotype under distinct environmental conditions, 

particularly important in disease resistance breeding. 
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The proven potential of optical techniques in automated, objective, and reproducible detection systems for 

early disease identification fundamentally transforms agricultural practices. This directly contrasts with 

the subjectivity, labor-intensiveness, and delayed detection inherent in traditional visual methods. The 

capacity to detect subtle physiological changes even before visible symptoms appear represents a 

significant advancement. This progression enables proactive disease management, minimizing pathogen 

spread and reducing crop losses, effectively moving agriculture from reactive measures to preventive 

strategies. It also significantly accelerates plant breeding processes by providing high-throughput 

phenotyping capabilities, leading to the faster development of disease-resistant crop varieties. 

Hyperspectral Imaging: Principles, Data Analysis, and Applications 

Hyperspectral imaging (HSI) is a fast and nondestructive sensing technology that has achieved remarkable 

results in plant disease identification. It operates by capturing reflected light from plants across dozens or 

even hundreds of continuous and narrow spectral bands (nanometer level resolution) within the 

electromagnetic spectrum, typically from 400 nm to 2500 nm. The data collected forms a three-

dimensional "hypercube," where two dimensions represent spatial position (X-Y) and the third dimension 

(λ) represents the spectral/wavelength information. This allows for the extraction of a complete 

hyperspectral resolution spectral curve at each pixel, providing a "spectral fingerprint" of the plant's 

chemical composition. 

The principle relies on understanding how plant leaves interact with light through transmission, 

absorption, and reflection. Different substances within the leaves (e.g., pigments, water, sugars) exhibit 

unique spectral characteristics, with varying reflectance and absorption values in specific wavebands. For 

instance, healthy green plants show a small reflection peak near 550 nm, a sharp increase in reflectance 

near 700 nm (the "red edge phenomenon"), and strong reflectance between 700 and 1200 nm. Plant 

pathogenesis induces continuous physiological and biochemical reactions that alter these optical 

properties, making it possible to detect and distinguish diseases at various stages. Data analysis methods 

for HSI include preprocessing (e.g., image mosaic, segmentation), the use of Vegetation Indices (VIS) 

like NDVI and GNDVI to represent disease-related changes, and sophisticated machine learning (e.g., K-

means clustering, SVM, KNN, Decision Tree) and deep learning algorithms (e.g., Stacked Auto-Encoder 

(SAE), Deep Belief Network (DBN), Convolutional Neural Networks (CNNs)) for classification. HSI has 

achieved significant success in plant disease characterization, detection, modeling, and classification. Its 

applications span precision crop production, horticulture, plant breeding, fungicide screening, and both 

basic and applied plant research. Despite its power, HSI faces challenges such as the high cost of 

hyperspectral cameras, environmental sensitivity during spectral acquisition, and time-consuming 

acquisition and processing, which limit real-time monitoring and widespread agricultural application. 

Multispectral Imaging: Principles, Spectral Bands, and Advantages 

Multispectral imaging (MSI) is a technique used for plant disease detection that involves capturing data 

in a limited number of broader spectral bands, as opposed to HSI which uses many narrow and closely 

spaced bands. The core principle behind MSI for plant disease detection lies in the fact that healthy and 

diseased plants reflect and absorb light differently across various wavelengths of the electromagnetic (EM) 

spectrum. Near-infrared (NIR) images, in particular, are crucial because they contain insights not available 

in the visible spectrum, enabling the identification of abnormal conditions beyond what the human eye 

can perceive. This allows for early intervention strategies in agriculture, supporting proactive disease 

management and improving crop yields. 

Studies have utilized customized digital single-filter reflex (DSLR) cameras capable of capturing various 
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segments of the EM spectrum depending on the filter used. Specific filters employed include K590 (590–

1000 nm), K665 (665–1000 nm), K720 (720–1000 nm), K850 (850–1000 nm), BlueIR (blue 450–500 nm 

and IR 800–1000 nm), and Hot Mirror (visible 400–800 nm, RGB images). The application of MSI, 

combined with deep learning algorithms like Convolutional Neural Networks (CNNs) and Vision 

Transformers (ViTs), aims to enhance the accuracy of plant disease identification. Filters capable of 

capturing both visible and NIR spectra (K590, K665, and K720) generally perform better in disease 

identification compared to filters limited to visible or NIR spectra alone. This approach, while providing 

less detailed spectral information than HSI, is often more practical and cost-effective due to lower data 

acquisition and processing requirements. 

Thermal Imaging (Infrared Thermography): Principles and Physiological Basis of Detection 

Infrared thermography, a thermal imaging technology, is used to detect plants stressed by biotic and abiotic 

factors. The principle relies on the fact that all objects above absolute zero (specifically, above -273 °C) 

generate infrared radiation. Thermal sensors convert the infrared radiation emitted by a target material into 

an electrical signal, which is then presented as a colored or monochromatic thermal photograph where 

color shifts represent thermal fluctuations. The quantity of emitted radiation by a body is determined by 

its temperature (T) and emissivity (ε). 

Physiologically, temperature fluctuations have been linked to pathogen attacks in various instances. 

During pathogen infection, the physiology of infected plant tissue is modified, including changes in 

transpiration rate, photosynthetic alteration, salicylic acid accumulation, stomatal conductance, and plant 

cell death. These modifications lead to changes in leaf temperature, making thermography a valuable tool. 

For example, infected tomato leaves have shown a reduction in temperature (approximately 0.5–1.3 °C 

lower) compared to non-infected leaves. Infrared thermography facilitates early and quick disease 

measurement, often before visible symptoms develop. It is a non-destructive, non-invasive, and non-

contact approach. Specific applications include detecting Venturia inaequalis (apple scab) on apple plants, 

identifying fungal infections like gray mold and powdery mildew on rose plants, assessing viral co-

infection in sweet potatoes, and discriminating between infected and uninfected wheat plants (e.g., for 

yellow rust) days before visual signs. Thermography has also been used to diagnose peanut leaf spots, 

distinguish healthy from basal stem rot infected oil palm trees, and predict pre-symptomatic pathogen 

influence in cucumbers. 

Chlorophyll Fluorescence Imaging: Mechanisms and Utility in Stress Detection 

Imaging of chlorophyll a fluorescence (CFI) represents an easy, precise, fast, and non-invasive technique 

that can successfully discriminate plant responses to phytotoxic stress with reproducible results without 

damaging the plants. The spatio-temporal analyses of fluorescence images provide information about 

damage evolution, secondary effects, and plant defense responses. The basic principle of CF analysis 

involves the absorption of a photon by a chlorophyll a molecule, which promotes an electron to an excited 

state. A fluorescence photon is then immediately emitted as the molecule returns to its ground state. CF is 

one of three mechanisms for energy dissipation in plants, alongside photochemistry and non-

photochemical quenching. Five different CF emission signals (F0, F′0, Fm, F′m, and Fs) allow the 

calculation of other CF parameters, such as maximal PSII quantum yield and effective PSII quantum yield. 

CFI is particularly useful for detecting early stress responses, often before visible symptoms appear over 

the leaf lamina or a decline in photosynthesis can be determined by gas exchange measurements. It has 

become a versatile tool for diagnosing, screening, and phenotyping plants due to its ability to spatially 

examine heterogeneity within a sample and evaluate changes simultaneously across multiple samples. 
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Applications include identifying and evaluating crop stress thresholds, integrating with other sensor data 

(e.g., temperature, humidity) for targeted interventions, and studying the phytotoxic effects of natural 

compounds. CFI also helps in understanding the dynamics of effects and overall plant responses to 

treatments, even when visible symptoms are not yet apparent, and can be decisive in studying how plants 

recover from stress. It avoids misunderstandings caused by "patchy photosynthesis" by capturing 

fluorescence across the entire leaf at once, providing a more accurate representation of stress-related 

effects. Currently, CFI is too slow and expensive for widespread commercial diagnostic use in open fields 

or greenhouses, though mobile and drone-compatible tools are under development. 

LiDAR and 3D Scanning for Plant Phenotyping and Disease Assessment 

LiDAR (Light Detection and Ranging)-equipped drones have emerged as a transformative tool in 

precision agriculture. They provide advanced analysis of crop health from an aerial perspective, enabling 

the early diagnosis of plant diseases that are often undetectable at ground level. Leveraging remote sensing 

capabilities, LiDAR drones excel in plant pathology detection. They can detect deviations in plant health 

that are invisible to the naked eye and capture high-resolution data crucial for accurate assessment of crop 

conditions. These drones are equipped with various sensors, including RGB, multispectral, and thermal 

sensors, to enhance data acquisition. 

In terms of applications, LiDAR drones facilitate timely treatment and effective management of crop 

diseases. They can monitor extensive agricultural areas with remarkable accuracy and efficiency, 

overcoming the limitations of traditional crop scouting. By facilitating early detection, LiDAR drones 

allow farmers to act promptly, minimizing the spread of diseases and enabling targeted interventions. They 

are also used for continuous monitoring in fruit orchards and for mapping canopy structure, contributing 

to effective orchard management. Furthermore, through sophisticated data analytics, LiDAR drones can 

predict areas prone to infections, enabling proactive disease management. The addition of 3D scanning, a 

recent optical analysis technique, supplies additional information on crop plant vitality. In plant 

phenotyping, LiDAR assesses the appearance and performance of a genotype under distinct environmental 

conditions, which is particularly important for disease resistance breeding, evaluating host-pathogen 

interactions, and assessing the susceptibility of breeding material. This addresses the labor-intensive and 

costly nature of traditional phenotyping. 

Integration of Sensor Technologies with IoT and Drone Platforms 

The integration of sensor technologies with Internet of Things (IoT) and drone platforms represents a 

significant advancement in plant disease detection. Unmanned Aerial Vehicles (UAVs), or drones, have 

become valuable tools for obtaining detailed data with high spatial, temporal, and spectral resolution. The 

advantages of drone technology include high spatial resolution, efficiency, usage flexibility, quick 

detection of plant diseases across large areas with low cost, reliability, and the provision of high-resolution 

data. The automated procedure involves gathering images of diseased plants using various sensors and 

cameras, followed by feature extraction, image processing, and the application of machine learning or 

deep learning algorithms. 

Drones revolutionize traditional disease monitoring and treatment by helping to quantify the extent of 

disease outbreaks and detect/identify symptoms when human assessment is unsuitable or unavailable. 

UAVs allow farmers to make timely decisions regarding disease management strategies because they can 

be deployed regularly and provide frequent updates on the spatial distribution of diseases. Additionally, 

UAVs can reach places that are hard to access with conventional tools, like large fields, dense vegetation, 

or hilly terrain, allowing for thorough disease monitoring throughout the agricultural landscape. Drones 
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can be equipped with digital (RGB), multispectral, hyperspectral, fluorescent, and thermal infrared-based 

imaging sensors, coupled with effective algorithms, to efficiently detect, differentiate, and quantify the 

severity of symptoms induced by various pathogens under field conditions. The integration of sensor 

technologies with IoT and drone platforms marks a significant leap in overcoming the inherent limitations 

of traditional methods. While traditional crop monitoring through visual examination is time-consuming, 

inefficient, and prone to errors, risking future losses , drone-based remote sensing offers a highly 

successful alternative for quickly detecting diseases in their early stages. This shift from manual, 

subjective methods to automated, objective, and scalable solutions is crucial for improving food security 

and meeting global targets. The ability of drones to cover vast areas quickly, provide high-resolution data, 

and reach inaccessible terrains directly addresses the scalability and accuracy challenges of human 

observation. Furthermore, the real-time data collection and seamless transfer to central systems facilitated 

by IoT integration empower farmers with actionable insights for proactive disease management, moving 

beyond reactive, often late, interventions. This technological convergence represents a critical 

advancement towards more lucrative and sustainable farming operations. 

 

Table 2: Overview of Advanced Sensor-Based Technologies for Plant Disease Detection 

Technology Principle/Mechanis

m 

Key 

Applications in 

Disease 

Detection 

Advantages Limitations Relevan

t 

Sources 

Hyperspectral 

Imaging (HSI) 

Captures light 

across hundreds of 

narrow, continuous 

spectral bands 

(hypercube); 

analyzes spectral 

fingerprints of plant 

chemistry 

Early 

detection, 

characterizatio

n, modeling, 

and 

classification 

of diseases; 

precision 

agriculture, 

plant breeding, 

fungicide 

screening 

Non-destructive, 

objective, high spectral 

resolution, detects 

subtle physiological 

changes before visible 

symptoms 

High cost, 

environmental 

sensitivity, time-

consuming 

acquisition/processin

g, model 

transferability, data 

redundancy 

 

Multispectral 

Imaging 

(MSI) 

Captures data in a 

few broader spectral 

bands (e.g., visible, 

NIR); analyzes 

differential light 

reflection/absorptio

n 

Early disease 

identification, 

particularly 

when 

combining 

visible and NIR 

spectra; 

supports 

proactive 

management 

More practical and 

cost-effective than 

HSI, lower data 

acquisition/processing, 

identifies abnormal 

conditions beyond 

human eye 

Less spectral detail 

than HSI, may not 

detect very subtle 

changes 
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Technology Principle/Mechanis

m 

Key 

Applications in 

Disease 

Detection 

Advantages Limitations Relevan

t 

Sources 

Thermal 

Imaging 

(Infrared 

Thermograph

y) 

Measures plant 

surface temperature 

based on emitted 

infrared radiation; 

detects temperature 

fluctuations 

Early detection 

of pathogen 

attacks, 

monitoring 

physiological 

changes 

(transpiration, 

photosynthesis

), 

distinguishing 

infected tissue 

Non-destructive, non-

invasive, non-contact, 

sensitive to early 

physiological changes, 

rapid measurement 

Affected by 

environmental 

factors, resolution 

can impact 

cost/accuracy 

 

Chlorophyll 

Fluorescence 

Imaging (CFI) 

Measures 

chlorophyll a 

fluorescence 

emission; quantifies 

energy dissipation 

in photosynthetic 

apparatus 

Early stress 

detection 

(biotic/abiotic), 

diagnosing, 

screening, 

phenotyping, 

studying 

recovery 

processes 

Non-invasive, fast, 

cost-effective (for 

research), detects 

stress before visible 

symptoms or 

photosynthesis decline 

Too slow and 

expensive for 

widespread 

commercial field use, 

sensitive to 

controlled conditions 

 

LiDAR and 

3D Scanning 

Uses pulsed laser 

light to measure 

distance and create 

3D models; 

analyzes canopy 

structure and plant 

vitality 

Early diagnosis 

of diseases, 

plant 

phenotyping 

(genotype 

performance), 

disease 

resistance 

breeding, 

mapping 

canopy 

structure 

High-resolution data, 

detects ground-level 

undetectable diseases, 

covers vast areas, 

objective 3D 

information 

Equipment cost, data 

processing 

complexity 

 

Drones 

(UAVs) with 

Integrated 

Sensors & IoT 

Platforms for 

carrying various 

sensors (RGB, 

multi/hyperspectral, 

thermal, 

fluorescence); data 

transfer via IoT 

Rapid, large-

area 

monitoring; 

early warning 

systems; 

targeted 

interventions; 

High 

spatial/temporal/spectr

al resolution, 

efficiency, flexibility, 

low cost (per area), 

real-time data for 

informed decisions 

Regulatory 

constraints, battery 

life, data processing 

infrastructure needs 
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Technology Principle/Mechanis

m 

Key 

Applications in 

Disease 

Detection 

Advantages Limitations Relevan

t 

Sources 

reaching 

inaccessible 

areas; 

quantifying 

outbreaks 

 

2. Artificial Intelligence and Deep Learning for Automated Disease Diagnosis 

The advent of Artificial Intelligence (AI) and Deep Learning (DL) has revolutionized the field of plant 

disease detection, offering automated, highly accurate, and efficient diagnostic capabilities that far surpass 

traditional methods. These technologies primarily leverage image-based analysis, transforming the way 

plant health is monitored and managed. 

Fundamentals of Image Processing: Preprocessing, Segmentation, and Feature Extraction 

The foundation of AI-driven plant disease detection systems lies in robust image processing pipelines. 

This typically begins with image acquisition, where relevant images of plant organs (primarily leaves, 

but also stems and fruits) are captured using high-resolution digital cameras, smartphones, or drone-

mounted sensors. The quality of these images is crucial for subsequent analysis. 

Following acquisition, image preprocessing is applied to enhance the image data by suppressing 

undesired distortions, removing noise, or enhancing features important for further processing. Common 

preprocessing techniques include filtering (e.g., Gabor filter), noise removal, image enhancement (e.g., 

histogram equalization, color conversion), resizing to a consistent input dimension, and normalization. 

This step ensures that the model focuses on pertinent characteristics for precise disease classification. 

Next, image segmentation is performed to simplify the image representation and distinguish the object 

of interest (e.g., diseased plant parts) from the background. This process is fundamental for feature 

extraction and pattern recognition. Various techniques are employed, such as K-means clustering, the 

Chan-Vase method, or using color scales like CIELAB to separate diseased and unaffected portions. 

Advanced deep learning models like U-Net are also highly effective for pixel-level segmentation of 

diseased regions. 

Finally, feature extraction aims to identify and quantify relevant characteristics from the processed 

images that can be used to determine the meaning of a given sample. These features typically include 

color, texture, shape, and patterns. Traditional methods involve hand-crafted features like color co-

occurrence, Local Binary Patterns (LBP), Gray-Level Co-occurrence Matrix (GLCM), and Histogram of 

Oriented Gradients (HOG). However, a significant advantage of deep learning models is their ability to 

automatically extract complex features directly from raw image data, eliminating the need for manual 

feature engineering. 

Convolutional Neural Networks (CNNs) for Image Classification 

Convolutional Neural Networks (CNNs) have emerged as a dominant force in image recognition and 

classification, proving exceptionally effective for automated plant disease diagnosis. CNNs operate by 

automatically extracting relevant features from input images and mapping them to corresponding disease 

classes. A typical CNN architecture comprises several key layers: convolutional layers which apply 
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learnable filters to detect various patterns like edges, textures, and more complex features; pooling layers 

that reduce the spatial dimensions of feature maps, thereby improving efficiency and helping to prevent 

overfitting; and fully connected layers that interpret the extracted features and make final predictions. 

Non-linear activation functions, such as Rectified Linear Unit (ReLU), are applied after convolutional 

layers to enable the network to learn intricate patterns. 

Detailed Architectures: AlexNet, VGG, ResNet, Inception, DenseNet, MobileNet 

Several prominent CNN architectures have been successfully adapted for plant disease detection: 

● AlexNet: An influential early CNN, AlexNet consists of eight layers: five convolutional layers and 

three fully connected (or Artificial Neural Network – ANN) layers. It utilizes ReLU activation, 

overlapping max pooling, and Local Response Normalization (LRN). Dropout layers are incorporated 

to prevent overfitting, particularly in its high-neuron count fully connected layers. AlexNet has 

demonstrated high accuracy, achieving 99.35% on a held-out test set from the PlantVillage dataset. 

● VGG: The VGG family of networks, such as VGG16 (13 convolutional, 3 fully connected layers) and 

VGG19 (16 convolutional, 3 fully connected layers), are characterized by their depth and the 

consistent use of small 3x3 kernel filters throughout their convolutional layers. This uniform 

architecture makes them relatively easy to understand and implement. VGG models have shown strong 

performance in plant disease classification, with VGG-16 achieving around 95.2% accuracy and 

VGG19 exceeding 95% accuracy in various studies. 

● ResNet: Residual Networks (ResNet), including variants like ResNet50, ResNet101, ResNet152V2, 

ResNet34, and ResNet197, introduced the groundbreaking concept of residual blocks or “skip 

connections”. These connections allow the model to bypass one or more layers, directly passing 

information and gradients, which effectively mitigates the vanishing gradient problem and enables the 

training of extremely deep networks. ResNet50 has achieved accuracies such as 96.35% for tomato 

leaf disease classification, and ResNet197 has reached 99.58% accuracy in broader plant disease 

classification tasks. 

● Inception: The Inception architecture, first introduced as GoogLeNet (InceptionV1) and evolving into 

versions like InceptionV3 and Inception-ResNet, features “Inception modules”. These modules 

employ multiple parallel branches with different filter sizes (e.g., 1x1, 3x3, 5x5 convolutions) and 1x1 

convolutions for dimensionality reduction, allowing the network to capture a wide range of features 

efficiently. GoogLeNet achieved a high accuracy of 99.56% for tomato plant disease identification, 

and InceptionV3, when optimized with Particle Swarm Optimization (PSO), reached 98.7% accuracy. 

● DenseNet: Dense Convolutional Networks (DenseNet), including DenseNet121, DenseNet169, and 

DenseNet201, feature a unique “dense connectivity” pattern where each layer is directly connected to 

every other subsequent layer in a feed-forward manner. This dense connectivity alleviates the 

vanishing gradient problem, encourages feature reuse, and substantially improves parameter 

efficiency. DenseNet201 has demonstrated strong performance, achieving a validation accuracy of 

98.70% in plant disease diagnosis. 

● MobileNet: MobileNet architectures, such as MobileNetV2, are lightweight CNNs specifically 

optimized for mobile and edge devices. They achieve high accuracy with low latency and 

computational cost by utilizing “inverted residual blocks” and “linear bottlenecks,” along with 

depthwise separable convolutions. MobileNet’s efficiency makes it a practical choice for real-world 

agricultural applications, allowing for fast and accurate disease detection on devices with limited 

resources. 
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Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) for Sequential Data 

Analysis 

Recurrent Neural Networks (RNNs) are a class of deep learning models specifically designed to handle 

sequential data, where the order of elements carries significance. Unlike traditional feedforward networks, 

RNNs possess connections that loop back to previous time steps, allowing them to retain a “memory” of 

past inputs and learn temporal dependencies within the data. This makes them suitable for tasks where the 

length of infected regions varies, as they can process sequences of variable length. 

A significant advancement within RNNs is the Long Short-Term Memory (LSTM) network. LSTMs 

are an improved variant of RNNs engineered to mitigate the vanishing gradient problem, a common issue 

in traditional RNNs that hinders learning over long sequences. LSTMs achieve this by incorporating a 

unique “gated cell” structure, comprising input, output, and forget gates. These gates regulate the flow of 

information into and out of the cell, allowing LSTMs to remember values over arbitrary time intervals and 

preserve error signals during backpropagation. LSTMs are used for feature extraction and classification 

in plant disease identification, and have been applied for time series prediction of pests and diseases, often 

integrating meteorological factors. 

Object Detection Models: YOLO for Real-time Disease Localization 

Object detection models are crucial for not only classifying diseases but also precisely localizing them 

within an image by drawing bounding boxes around affected areas. The YOLO (You Only Look Once) 

algorithm is a prominent real-time object detection system that processes images through a single forward 

pass of a neural network, performing both object recognition and bounding box regression simultaneously. 

This single-pass efficiency allows YOLO to process images at high speeds, making it ideal for real-time 

applications. 

YOLO operates by dividing an input image into a grid of cells, with each cell responsible for localizing 

and predicting the class of an object whose center falls within it. To enhance accuracy, YOLO utilizes 

anchor boxes of varying sizes and aspect ratios, along with techniques like Intersection Over Union (IoU) 

to evaluate bounding box accuracy and Non-Max Suppression (NMS) to eliminate redundant detections. 

Recent iterations, such as the improved YOLOv8 model (e.g., SerpensGate-YOLOv8), incorporate 

advanced components like a Backbone for feature extraction (e.g., using C2f-DySnakeConv, SPPELAN, 

Super Token Attention (STA)), a Neck for multi-scale feature fusion, and a Head for final classification 

and detection. These models produce multi-scale output feature maps (e.g., 20x20, 40x40, 80x80) to 

effectively detect plant disease regions of varying sizes and complex morphological characteristics. 

Improved YOLOv8 models have shown significant performance gains, with one achieving a 3.3% 

improvement in mean Average Precision (mAP@0.5) over the original YOLOv8. 

Semantic Segmentation Models: U-Net for Pixel-Level Disease Mapping 

Semantic segmentation is a more granular approach than object detection, aiming to classify each pixel in 

an image into a specific category, thereby precisely mapping diseased regions at a pixel level. The U-Net 

architecture is particularly effective for such precise segmentation tasks in plant disease detection, 

enabling the distinction between healthy and infected areas. 

U-Net is characterized by its symmetric “U”-shaped encoder-decoder architecture with crucial “skip 

connections”. The encoder (contracting path) captures high-level contextual features by applying 

convolutional layers followed by max-pooling to reduce spatial dimensions while increasing feature 

channels. The decoder (expanding path) then mirrors this process, using up-sampling to restore the 

original resolution. The skip connections are vital, as they concatenate feature maps from the encoder to 
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corresponding layers in the decoder, ensuring that fine-grained spatial details lost during down-sampling 

are preserved and integrated into the up-sampled feature maps. U-Net models often employ regularization 

techniques like dropout, batch normalization, and ReLU activation to prevent overfitting and improve 

learning. When trained on high-quality “Leaf Disease Segmentation” datasets with annotated regions of 

unhealthy leaf tissue, U-Net models have achieved high validation accuracies, with one study reporting 

98.99%. 

The Role of Transfer Learning in Model Development 

Transfer learning is a common and highly effective approach in deep learning for tasks where  abelled 

data might be limited. Instead of training a model from scratch, transfer learning involves fine-tuning a 

pre-trained model (e.g., VGG, ResNet, Inception, MobileNet) that has already learned rich features from 

a very large, general-purpose image dataset like ImageNet. This process significantly reduces the 

computational load and training time required, while simultaneously improving feature extraction 

capabilities, enhancing overall accuracy, and boosting the robustness of the model, especially when 

applied to specific plant disease datasets. 

Enhancing Transparency with Explainable AI (XAI): Grad-CAM, LIME, SHAP 

As deep learning models become more complex and achieve higher accuracies, they often operate as 

“black boxes,” making it difficult to understand why a particular prediction was made. This lack of 

transparency can hinder user trust and validation, which is a significant concern in critical applications 

like plant disease diagnosis. Explainable AI (XAI) addresses this challenge by providing interpretable 

insights into the model’s decision-making process, thereby enhancing transparency and usability. XAI 

techniques are crucial for validating and trusting the system’s predictions in real-world agricultural 

scenarios. 

Key XAI techniques include: 

● Grad-CAM (Gradient-weighted Class Activation Mapping): A model-specific method for CNNs 

that provides visual explanations by highlighting the influential regions in the input image that 

contributed most to the model’s prediction. For instance, when diagnosing apple scab, Grad-CAM can 

reveal if the model is correctly focusing on the characteristic spots and lesions associated with the 

disease. 

● LIME (Local Interpretable Model-agnostic Explanations) and SHAP (Shapley Additive 

Explanations): These are more general XAI techniques that can pinpoint which features or regions 

contributed most to a prediction, enhancing transparency and aiding quality control. 

Emerging Paradigms: Federated Learning for Decentralized Training 

Federated learning represents an emerging paradigm that addresses concerns related to data privacy and 

computational decentralization in AI model training. This approach enables decentralized model training 

on edge devices, such as smartphones or farm-based sensors, without requiring the raw image data to be 

uploaded to a central server. Farmers can collaboratively train a shared global model by contributing their 

local model updates, thereby preserving data privacy while still benefiting from a collectively improved 

AI system. This approach is particularly promising for agricultural settings where data privacy is 

paramount and internet connectivity might be inconsistent, allowing for more robust and widely applicable 

plant disease detection solutions. 
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Table 3: Summary of Key Deep Learning Architectures for Plant Disease Detection 

Architecture Key Characteristics Typical Application in 

Plant Disease Detection 

Reported Performance 

(Example) 

Relevant 

Sources 

AlexNet 8 layers (5 Conv, 3 FC), 

ReLU, overlapping max 

pooling, LRN, dropout 

Image classification, 

early disease diagnosis 

99.35% accuracy 

(PlantVillage) 

 

VGG (VGG16, 

VGG19) 

Deep (16/19 layers), 

uniform 3x3 kernel filters, 

multiple pooling layers 

Image classification, 

feature extraction, 

disease identification 

VGG16: 95.2% 

accuracy ; VGG19: 

>95% accuracy 

 

ResNet 

(ResNet50, etc.) 

Residual blocks (skip 

connections) to overcome 

vanishing gradients, 

enables very deep networks 

Image classification, 

phenotyping of sick 

tissue, disease 

diagnosis 

ResNet50: 96.35% 

accuracy ; ResNet197: 

99.58% accuracy 

 

Inception 

(GoogLeNet, 

InceptionV3) 

Inception modules with 

parallel multi-scale 

convolutions, 1x1 conv for 

dimensionality reduction 

Image classification, 

enhancing accuracy in 

disease classification 

GoogLeNet: 99.56% 

accuracy ; 

InceptionV3: 98.7% 

accuracy with PSO 

 

DenseNet 

(DenseNet121, 

etc.) 

Dense connectivity (each 

layer connected to all 

subsequent layers), feature 

reuse, parameter efficiency 

Plant disease diagnosis, 

image classification 

DenseNet201: 98.70% 

validation accuracy 

 

MobileNet 

(MobileNetV2) 

Lightweight, optimized for 

mobile/edge devices, 

inverted residual blocks, 

linear bottlenecks 

Efficient disease 

detection on mobile 

devices, real-time 

classification 

High accuracy with 

low latency 

 

YOLO (You Only 

Look Once) 

Single-pass object 

detection, real-time 

bounding box prediction 

and classification 

Real-time disease 

localization, identifying 

disease foci 

Improved YOLOv8: 

3.3% mAP@0.5 

improvement 

 

U-Net Symmetric encoder-

decoder with skip 

connections, pixel-level 

classification 

Semantic segmentation 

of diseased areas, 

precise mapping of 

disease regions 

98.99% validation 

accuracy 

 

RNN/LSTM Recurrent connections for 

sequential data, LSTMs 

handle long-term 

dependencies via gated cells 

Analysis of temporal 

disease progression, 

time series prediction of 

pests/diseases 

Effective in time series 

prediction 

 

 

3. Key Datasets for Training and Validation 

The development and validation of robust AI and deep learning models for plant disease detection heavily 

rely on the availability of high-quality, diverse, and well-annotated datasets. Several publicly available 

datasets have become instrumental in advancing research in this field. 
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Overview of Publicly Available Datasets: PlantVillage, PlantCLEF, PlantDoc 

● PlantVillage: This is one of the most widely used datasets for plant disease detection research. It 

comprises 61,486 images of plant leaves and backgrounds, categorized into 39 different plant diseases 

across 38 distinct classes (crop-disease pairs), including healthy leaves. To enhance diversity and 

simulate various background conditions, the dataset was created with six different augmentation 

techniques: scaling, rotation, noise injection, gamma correction, image flipping, and PCA color 

augmentation. It is available in both augmented and non-augmented subsets. 

● PlantCLEF: This dataset is primarily associated with challenges focused on image-based plant 

species identification in high-resolution vegetation plot images, known as quadrats (typically 0.5 to 1 

square meter in size). The challenge involves a multi-label classification task, aiming to predict all 

plant species present within a quadrat image from a vast number of potential species (thousands). 

While the test data consists of multi-label plot images, the training data is often composed of single-

label images of individual plants or plant parts. For instance, PlantCLEF 2022 included 4 million 

images covering 80,000 species, and PlantCLEF 2024 introduced a new test set with thousands of 

multi-label images covering over 800 species. PlantCLEF addresses the complexities of fine-grained 

classification and the impact of environmental variability in real-world settings. 

● PlantDoc: The PlantDoc dataset consists of high-quality images from 27 plant disease classes and has 

been utilized for developing generalizable models capable of performing accurately in diverse 

conditions. To improve generalization to real-world settings, PlantDoc is often combined with web-

sourced images. A notable limitation of this dataset, however, is that most of its images were collected 

in controlled environments, which can hinder a model’s ability to generalize to the varied and intricate 

ways plant diseases manifest in the field. 

Other publicly available datasets mentioned in the literature include “New Plant Diseases” (approximately 

87,000 RGB images across 38 classes) , IPM Images, APS Images, and PLD. Additionally, specialized 

datasets like a manually collected image dataset of sugarcane leaf disease, containing 2,569 images across 

five categories (Healthy, Mosaic, Redrot, Rust, Yellow disease), have been developed with smartphone-

captured images to maintain diversity. 

Dataset Characteristics, Image Types, and Data Augmentation Strategies 

The characteristics of datasets used for plant disease detection vary significantly, impacting model 

performance and generalizability. Image types predominantly include RGB images, which are the most 

common input for visual recognition tasks. However, advanced sensor technologies contribute 

multispectral and hyperspectral images, often collected in controlled environments, providing richer 

spectral information beyond the visible spectrum. Near-Infrared (NIR) images, in particular, are 

considered favorable for identifying plant diseases as they provide unseen information that supplements 

human visual perception. 

Data augmentation strategies are crucial for addressing data scarcity, increasing dataset diversity, and 

improving model generalization and robustness, especially when dealing with limited datasets. These 

techniques artificially expand the training dataset by creating modified versions of existing images. 

Common augmentation methods include scaling, rotation, noise injection (e.g., Gaussian noise to enhance 

resilience to sensor noise), gamma correction, image flipping (horizontal/vertical to simulate natural 

variations in leaf orientation), and PCA color augmentation. Affine transformations are also employed to 

compensate for perspective distortions from different camera angles, and luminance adjustments simulate 

various lighting conditions encountered in real-world scenarios. The use of dropout techniques during 
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model training also helps prevent overfitting and improves generalization. 

Despite these efforts, significant challenges persist in data collection and curation. Most current detection 

methods rely heavily on lab-captured images, which may not generalize well to the diverse and 

uncontrolled conditions of real-world agricultural settings. Collecting and annotating large-scale datasets 

that encompass all plant species and disease variations is an enormous and labor-intensive task. 

Consequently, data scarcity and the limited availability of diverse,  abelled training data remain 

significant challenges for developing truly robust and generalizable models. 

 

Table 4: Prominent Publicly Available Datasets for Plant Disease Detection 

Dataset Name Primary Focus Number of 

Images 

Number of 

Classes/Diseases 

Key Features & Image Types Relevant 

Sources 

PlantVillage Plant disease 

classification 

61,486 39 diseases / 38 

classes (crop-

disease pairs) 

RGB images of leaves and 

backgrounds; created with 6 

augmentation techniques 

(scaling, rotation, noise, gamma 

correction, flipping, PCA color) 

for diversity 

 

PlantCLEF Plant species 

identification in 

vegetation plots 

4M 

(training), 

thousands 

(test) 

80k species (2022), 

800+ species 

(2024) 

High-resolution RGB quadrat 

images (0.5-1 sq meter); multi-

label classification challenge; 

training often single-label, test 

multi-label 

 

PlantDoc Generalizable 

plant disease 

detection in 

diverse 

conditions 

2,598 

(PlantDoc) 

27 disease classes High-quality images; often 

combined with web-sourced 

images; potential limitation: 

mostly controlled environment 

images 

 

New Plant 

Diseases 

Plant disease 

classification 

~87,000 38 classes RGB images of healthy and 

diseased crop leaves; divided 

into training/validation/test sets 

 

Sugarcane 

Leaf Disease 

Sugarcane leaf 

disease detection 

2,569 5 categories 

(Healthy, Mosaic, 

Redrot, Rust, 

Yellow) 

Images captured with 

smartphones for diversity 

 

 

6. Persistent Challenges and Future Directions 

Despite the remarkable advancements in plant disease detection driven by sensor technologies and 

artificial intelligence, several persistent challenges must be addressed to realize the full potential of these 

innovations for sustainable agriculture. 

Addressing Data Scarcity and Enhancing Dataset Diversity for Generalization 

A significant challenge in developing robust deep learning models for plant disease detection is the 

inherent data scarcity. Deep learning models require vast amounts of labeled training data to learn 

complex patterns effectively. This limitation is particularly pronounced for rare or emerging diseases, 
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where labeled samples are scarce. Furthermore, models trained predominantly on lab-captured images 

often struggle to generalize well to diverse, uncontrolled real-world environments, which feature varying 

backgrounds, lighting conditions, and occlusions. This discrepancy between training data and real-world 

application hinders practical deployment. 

To overcome these limitations, data augmentation techniques are crucial. These methods artificially 

expand the diversity of existing datasets by applying transformations such as scaling, rotation, noise 

injection (e.g., Gaussian noise), gamma correction, image flipping, and PCA color augmentation. Affine 

transformations can compensate for perspective distortions, and luminance adjustments simulate various 

lighting conditions, making models more robust to real-world variability. Transfer learning with pre-

trained models also provides a powerful solution, allowing models to leverage features learned from large, 

general datasets and adapt them to specific plant disease tasks with limited data. Combining diverse 

datasets, such as PlantDoc with web-sourced images, has also proven effective in improving generalization 

capabilities. Continued efforts are needed to create and make more publicly available datasets that 

represent a broader range of plant species, disease stages, and environmental conditions. 

Mitigating Environmental Variability and Improving Model Robustness 

Real-world agricultural settings present complex and dynamic environmental factors that significantly 

impact the accuracy and reliability of automated disease detection systems. These include occlusions from 

leaves, highly variable lighting conditions (e.g., shadows, direct sunlight), background clutter, dust, water 

on leaves, and uneven terrain. Such conditions can obscure subtle or early signs of disease, making 

detection challenging for both human observers and automated systems. 

To mitigate these challenges and improve model robustness, enhanced data augmentation techniques, 

such as adding Gaussian noise, are employed to build resilience against sensor noise and lighting 

variations. It is essential for models to be capable of classifying images accurately across various lighting 

conditions, orientations, and sizes. The integration of multi-scale feature extraction, as seen in object 

detection models like YOLO, allows systems to capture symptoms of varying sizes and patterns 

effectively. Furthermore, advanced architectural modules like Super Token Attention (STA), Dynamic 

Snake Convolution (DSConv), and Spatial Pyramid Pooling and Efficient Layer Aggregation Network 

(SPPELAN), used in models like YOLOv8, are specifically designed to improve robustness to complex 

backgrounds, capture irregular disease boundaries, and enhance feature representation quality. 

Computational Demands and the Path to Real-Time, Edge-Device Deployment 

A significant barrier to the widespread adoption of AI-driven plant disease detection, particularly for real-

time, in-field applications, is the high computational demand of deep learning models. Larger models 

require substantial processing power and memory, which can restrict their practical use on resource-

limited devices commonly found in agricultural settings. Even advanced sensor technologies like 

hyperspectral imaging can involve long acquisition and processing times, limiting their utility for 

immediate, actionable insights. 

The path to real-time, edge-device deployment necessitates the development of more computationally 

efficient solutions. Lightweight architectures, such as MobileNet, are specifically optimized for mobile 

and edge devices, offering low latency and computational efficiency while maintaining high accuracy. 

The focus on model compactness and efficiency is a key research direction. Techniques like online 

knowledge distillation can facilitate cross-species knowledge transfer, potentially reducing individual 

model sizes. Moreover, improving data processing speed through modern on-chip calculation systems 

(e.g., FPGAs) and developing specific intellectual property kernels are crucial steps toward achieving real-
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time identification and control strategies directly in the field. 

The "Black Box" Problem: Advancing Model Interpretability and Trust 

Deep learning models, despite their impressive performance, often operate as "black boxes," meaning their 

internal decision-making processes are opaque and difficult for humans to understand. This lack of 

transparency can erode user trust and hinder the validation of model predictions, which is a critical concern 

in high-stakes applications like plant disease diagnosis. Farmers and agricultural experts need to 

understand why a model is predicting a certain disease to confidently apply treatments and manage their 

crops. 

Explainable AI (XAI) techniques are emerging as a vital solution to this "black box" problem. XAI aims 

to provide human-understandable explanations for the decisions made by complex machine learning 

models, thereby enhancing transparency and usability. In the context of plant disease detection, methods 

like Grad-CAM (Gradient-weighted Class Activation Mapping) are particularly useful. Grad-CAM, a 

model-specific technique for CNNs, generates visual heatmaps that highlight the influential regions in the 

input image that most contributed to the model's prediction. This allows users to visually verify if the 

model is focusing on the characteristic spots or lesions associated with a particular disease. Other XAI 

techniques like LIME (Local Interpretable Model-agnostic Explanations) and SHAP (Shapley Additive 

Explanations) also contribute by pinpointing the features or data points that drive a prediction. By making 

AI decisions more transparent, XAI fosters greater trust and facilitates the practical adoption of these 

advanced systems in agriculture. 

Cost-Effectiveness and Accessibility for Widespread Adoption 

The high cost associated with advanced sensor technologies, such as hyperspectral cameras, currently 

limits their widespread agricultural application, particularly for smallholder farmers or in developing 

regions. While low-cost thermal cameras exist, they may offer lower resolution, potentially impacting the 

accuracy of early disease detection. 

To promote cost-effectiveness and accessibility, research efforts are focusing on developing low-cost, 

smartphone-assisted diagnosis systems, leveraging the ubiquitous presence of mobile devices. Optimizing 

deep learning models for resource-constrained devices, as exemplified by lightweight architectures like 

MobileNet, is crucial for enabling practical field deployment through mobile applications or embedded 

systems. Furthermore, emerging paradigms like federated learning can reduce infrastructural costs by 

enabling decentralized model training, thereby avoiding the need for expensive central server 

infrastructure and large data transfers. These advancements aim to democratize access to advanced plant 

disease detection capabilities, making them viable for a broader range of agricultural stakeholders. 

Interdisciplinary Research and Integrated Pest Management Strategies 

Plant diseases are complex phenomena, influenced by intricate interactions between the plant host, 

pathogens, and various environmental factors. Effective disease management therefore requires a holistic 

and interdisciplinary approach. The current focus on automated detection systems needs to be 

seamlessly integrated into broader Integrated Pest Management (IPM) strategies. 

IPM combines biological, cultural, physical, and chemical tools to minimize damage while promoting 

environmental sustainability. Future research should emphasize developing models that can differentiate 

between biotic stresses (diseases) and abiotic stresses (e.g., drought, nutrient deficiencies), as their 

symptoms can sometimes be similar. This requires models that can remove the effects of other biotic or 

abiotic stresses from disease identification. Integrating observations from advanced detection systems with 

existing IPM practices and soil health assessments can lead to more targeted and sustainable interventions, 
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reducing reliance on broad-spectrum chemical treatments. The increasing impact of climate change also 

necessitates the development of integrated and climate-smart pest management strategies that can adapt 

to evolving disease patterns and environmental conditions. Collaborative research across plant pathology, 

agricultural engineering, computer science, and environmental science will be essential to develop 

comprehensive, adaptive, and sustainable solutions for plant disease management. 

 

Table 5: Major Challenges and Proposed Solutions in Automated Plant Disease Detection 

Challenge Description Proposed Solutions & Techniques Relevant 

Sources 

Data Scarcity & 

Lack of Diversity 

Deep learning requires vast 

labeled data; limited for rare 

diseases; lab-captured images 

don't generalize to real-world 

variability. 

Data augmentation (scaling, rotation, 

noise, flipping, affine, luminance); 

Transfer learning with pre-trained 

models; Combining diverse datasets; 

More public datasets. 

 

Environmental 

Variability 

Complex field conditions 

(occlusions, lighting, 

background clutter, dust, 

water) obscure symptoms and 

affect accuracy. 

Enhanced data augmentation (e.g., 

Gaussian noise); Models robust to 

varying conditions (lighting, orientation, 

size); Multi-scale feature extraction 

(YOLO); Advanced architectural 

modules (STA, DSConv, SPPELAN). 

 

Computational 

Demands 

Large deep learning models 

are computationally 

expensive, hindering real-

time, edge-device deployment. 

Lightweight architectures (MobileNet); 

Model compactness and efficiency; 

Online knowledge distillation; On-chip 

calculation systems (FPGA). 

 

"Black Box" 

Problem (Lack of 

Interpretability) 

Deep learning models' opaque 

decision-making reduces user 

trust and validation in critical 

applications. 

Explainable AI (XAI) techniques (Grad-

CAM, LIME, SHAP) to provide human-

understandable explanations and 

highlight influential regions. 

 

Cost-Effectiveness & 

Accessibility 

High cost of advanced sensors 

limits widespread adoption, 

especially for smallholders. 

Development of low-cost, smartphone-

assisted diagnosis systems; Optimization 

for resource-constrained devices; 

Federated learning for decentralized 

training. 

 

Interdisciplinary 

Integration 

Plant diseases are complex; 

effective management requires 

holistic, integrated strategies. 

Integrated and climate-smart pest 

management; Combining detection with 

IPM and soil health assessments; 

Research differentiating biotic/abiotic 

stresses; Fostering cross-disciplinary 

collaboration. 

 

 

7. Conclusion 

The field of plant disease detection has witnessed a profound transformation, evolving from traditional, 

often subjective and labor-intensive methods to highly sophisticated, automated, and objective 
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approaches. This review has highlighted the critical importance of early and accurate disease detection for 

global food security, economic stability, and environmental sustainability, emphasizing the substantial 

yield losses and economic impacts currently caused by plant pathogens. The inherent limitations of 

conventional techniques, such as visual inspection's subjectivity and microbiological methods' time-

consuming nature, created a compelling imperative for technological advancement. 

Modern sensor-based technologies, including hyperspectral, multispectral, thermal, and chlorophyll 

fluorescence imaging, alongside LiDAR and 3D scanning, have revolutionized the ability to detect subtle 

physiological changes in plants even before visible symptoms appear. These non-destructive methods 

provide objective, reproducible data crucial for precision agriculture and high-throughput plant 

phenotyping. The integration of these sensors with IoT and drone platforms further amplifies their 

capabilities, enabling large-scale, real-time monitoring and targeted interventions, thereby significantly 

overcoming the scalability and efficiency constraints of human-centric approaches. 

Artificial intelligence and deep learning, particularly Convolutional Neural Networks (CNNs) with their 

diverse architectures (e.g., AlexNet, VGG, ResNet, Inception, DenseNet, MobileNet), have become 

central to automated disease diagnosis. These models excel at image classification, object detection 

(YOLO), and pixel-level segmentation (U-Net), demonstrating impressive accuracies in identifying and 

localizing plant diseases. The strategic use of transfer learning has accelerated model development, 

enabling high performance even with limited specialized datasets. Emerging areas like Explainable AI 

(XAI) are addressing the "black box" problem, fostering trust and interpretability, while federated learning 

promises privacy-preserving, decentralized training. 

Despite these significant strides, persistent challenges remain. Data scarcity, particularly for real-world 

conditions, and the need to enhance dataset diversity for robust generalization are critical. Mitigating the 

effects of environmental variability and improving model robustness in complex field settings are ongoing 

research priorities. The computational demands of advanced deep learning models necessitate further 

development of lightweight architectures and efficient edge-device deployment solutions for real-time 

applications. Finally, ensuring the cost-effectiveness and accessibility of these technologies for all farmers, 

and integrating them seamlessly into comprehensive, interdisciplinary Integrated Pest Management 

strategies, are crucial for their widespread adoption and ultimate impact. 

Future research should prioritize the creation of larger, more diverse, and meticulously annotated datasets 

that accurately reflect real-world agricultural conditions. Further exploration into lightweight and energy-

efficient deep learning architectures, coupled with advancements in on-chip processing, will be vital for 

scalable, real-time, in-field deployment. Deepening the integration of XAI techniques will enhance model 

transparency and user confidence, facilitating practical application. Moreover, fostering interdisciplinary 

collaboration among plant pathologists, agricultural engineers, and AI researchers will be essential to 

develop holistic, climate-smart disease management solutions that can adapt to evolving environmental 

challenges. By addressing these priorities, advanced plant disease detection technologies hold immense 

transformative potential for reducing crop losses, enhancing agricultural yields, improving food safety, 

and contributing significantly to global food security and sustainable farming practices. 
 

इन स्रोतों से जानकारी ली गई 

1. Plant Disease Detection by Imaging Sensors – Parallels and Specific Demands for Precision 

Agriculture and Plant Phenotyping - APS Journals, https://apsjournals.apsnet.org/doi/10.1094/PDIS-

03-15-0340-FE 2. Revolutionizing agriculture with artificial intelligence: plant disease detection 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR250452542 Volume 7, Issue 4, July-August 2025 22 

 

methods, applications, and their limitations - PMC, 

https://pmc.ncbi.nlm.nih.gov/articles/PMC10965613/  

2. Key Challenges in Plant Pathology in the Next Decade | Phytopathology® - APS Journals, 

https://apsjournals.apsnet.org/doi/10.1094/PHYTO-04-24-0137-KC  

3. Emerging Plant Diseases and Global Food Security | Epidemiology - APS Journals, 

https://apsjournals.apsnet.org/doi/book/10.1094/9780890546383  

4. Economic impact | EFSA - European Union, https://www.efsa.europa.eu/en/plh4l/economic-impact  

5. Revolutionizing agriculture with artificial intelligence: plant disease detection methods, applications, 

and their limitations - Frontiers, https://www.frontiersin.org/journals/plant-

science/articles/10.3389/fpls.2024.1356260/full  

6. Plant Disease Detection Techniques: A Review - Amity University Noida, 

https://amity.edu/icactm/Proceeding/Paper%20Index%20Content/24%20T1%20P7%20ID%2036.pdf  

7. Visual inspection - (Intro to Botany) - Vocab, Definition, Explanations | Fiveable, 

https://library.fiveable.me/key-terms/introduction-botany/visual-inspection  

8. Plant Disease Diagnosis: Techniques and Tools - Number Analytics, 

https://www.numberanalytics.com/blog/plant-disease-diagnosis-techniques-tools  

9. Detecting and Managing Crop Diseases with Lidar Drones, 

https://www.agrisensedrones.com/managing-crop-diseases-lidar-drones/  

10. Plant Disease Detection Using Computer Vision in Agriculture | ImageVision.ai, 

https://imagevision.ai/blog/plant-disease-detection-using-computer-vision-for-early-diagnosis-and-

prevention/  

11. Real-Time PCR and Its Application in Plant Disease Diagnostics - CORE, 

https://core.ac.uk/download/pdf/234687067.pdf  

12. Serological Tests - Springer Nature Experiments, 

https://experiments.springernature.com/articles/10.1007/978-1-0716-0334-5_30  

13. Applications of Drone for Crop Disease Detection and Monitoring: A Review - ResearchGate, 

https://www.researchgate.net/publication/387944874_Applications_of_Drone_for_Crop_Disease_D

etection_and_Monitoring_A_Review  

14. (PDF) Plant Disease Detection using ResNet - ResearchGate, 

https://www.researchgate.net/publication/371240835_Plant_Disease_Detection_using_ResNet  

15. Plant Leaf Disease Detection Using Deep Learning: A Multi-Dataset Approach - MDPI, 

https://www.mdpi.com/2571-8800/8/1/4  

16. Hyperspectral Sensing of Plant Diseases: Principle and Methods, https://www.mdpi.com/2073-

4395/12/6/1451  

17. (PDF) Hyperspectral Imaging: A Tool for Plant Disease Detection - ResearchGate, 

https://www.researchgate.net/publication/378108469_Hyperspectral_Imaging_A_Tool_for_Plant_Di

sease_Detection  

18. Multispectral Plant Disease Detection with Vision Transformer ..., 

https://pmc.ncbi.nlm.nih.gov/articles/PMC10611079/  

19. Plant Disease Detection Using Multispectral Imaging - ResearchGate, 

https://www.researchgate.net/publication/372349128_Plant_Disease_Detection_Using_Multispectral

_Imaging  

20. (PDF) Concept and Application of Infrared Thermography for Plant ..., 

https://www.ijfmr.com/
https://pmc.ncbi.nlm.nih.gov/articles/PMC10965613/
https://apsjournals.apsnet.org/doi/10.1094/PHYTO-04-24-0137-KC
https://apsjournals.apsnet.org/doi/book/10.1094/9780890546383
https://www.efsa.europa.eu/en/plh4l/economic-impact
https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2024.1356260/full
https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2024.1356260/full
https://amity.edu/icactm/Proceeding/Paper%20Index%20Content/24%20T1%20P7%20ID%2036.pdf
https://library.fiveable.me/key-terms/introduction-botany/visual-inspection
https://www.agrisensedrones.com/managing-crop-diseases-lidar-drones/
https://imagevision.ai/blog/plant-disease-detection-using-computer-vision-for-early-diagnosis-and-prevention/
https://imagevision.ai/blog/plant-disease-detection-using-computer-vision-for-early-diagnosis-and-prevention/
https://core.ac.uk/download/pdf/234687067.pdf
https://experiments.springernature.com/articles/10.1007/978-1-0716-0334-5_30
https://www.researchgate.net/publication/387944874_Applications_of_Drone_for_Crop_Disease_Detection_and_Monitoring_A_Review
https://www.researchgate.net/publication/387944874_Applications_of_Drone_for_Crop_Disease_Detection_and_Monitoring_A_Review
https://www.researchgate.net/publication/371240835_Plant_Disease_Detection_using_ResNet
https://www.mdpi.com/2073-4395/12/6/1451
https://www.mdpi.com/2073-4395/12/6/1451
https://www.researchgate.net/publication/378108469_Hyperspectral_Imaging_A_Tool_for_Plant_Disease_Detection
https://www.researchgate.net/publication/378108469_Hyperspectral_Imaging_A_Tool_for_Plant_Disease_Detection
https://pmc.ncbi.nlm.nih.gov/articles/PMC10611079/
https://www.researchgate.net/publication/372349128_Plant_Disease_Detection_Using_Multispectral_Imaging
https://www.researchgate.net/publication/372349128_Plant_Disease_Detection_Using_Multispectral_Imaging


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR250452542 Volume 7, Issue 4, July-August 2025 23 

 

https://www.researchgate.net/publication/364741970_Concept_and_Application_of_Infrared_Therm

ography_for_Plant_Disease_Measurement  

21. Early detection of plant disease using infrared thermal imaging - ResearchGate, 

https://www.researchgate.net/publication/260278042_Early_detection_of_plant_disease_using_infra

red_thermal_imaging  

22. Imaging of Chlorophyll a Fluorescence in Natural ... - Frontiers, 

https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2020.583590/full  

23. Applications of Drone for Crop Disease Detection and Monitoring: A Review - AWS, 

https://sdiopr.s3.ap-south-

1.amazonaws.com/2025/JANUARY/16_Jan_2025/2024_ARJA_128118/Ms_ARJA_128118.pdf  

24. (PDF) A review on automated plant disease detection: motivation, limitations, challenges, and recent 

advancements for future research - ResearchGate, 

https://www.researchgate.net/publication/391610335_A_review_on_automated_plant_disease_detec

tion_motivation_limitations_challenges_and_recent_advancements_for_future_research  

25. Applying image processing technique to detect plant diseases - CiteSeerX, 

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=f0873dc46d0dcacde2e9a50b7ec9

9388bf7dcf88  

26. A Review of Image Processing Techniques Common in Human and Plant Disease Diagnosis - MDPI, 

https://www.mdpi.com/2073-8994/10/7/270  

27. [PDF] Plant Disease Detection Using Image Processing - Semantic Scholar, 

https://www.semanticscholar.org/paper/Plant-Disease-Detection-Using-Image-Processing-Khirade-

Patil/575467ca9dc8d7f687fe2f490f6b18932b5c45bd  

28. Plant Disease Classification using AlexNet - Analytics Vidhya, 

https://www.analyticsvidhya.com/blog/2023/02/plant-disease-classification-using-alexnet/  

29. Enhancing plant disease detection through deep learning: a Depthwise CNN with squeeze and 

excitation integration and residual skip connections - Frontiers, 

https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2024.1505857/full  

30. Using Deep Learning for Image-Based Plant Disease Detection - Frontiers, 

https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2016.01419/full  

31. Deep Learning VGG19 Model for Precise Plant Disease Detection - AWS, 

https://arccarticles.s3.amazonaws.com/OnlinePublish/Final-article-attachemnt-with-doi-D-6220-

6089603e9087340b9bdcbbb1.pdf  

32. Plant Diseased Lesion Image Segmentation and Recognition Based on Improved Multi-Scale 

Attention Net - MDPI, https://www.mdpi.com/2076-3417/14/5/1716 34. Defect Detection in Fruits 

and Vegetables using K Means ... - IRJET, https://www.irjet.net/archives/V7/i4/IRJET-V7I4534.pdf  

4. 35. Enhanced Leaf Disease Segmentation Using U‐Net Architecture for ..., 

https://pmc.ncbi.nlm.nih.gov/articles/PMC12257497/  

5. 36. Enhanced Leaf Disease Segmentation Using U-Net Architecture for Precision Agriculture: A Deep 

Learning Approach - PubMed, https://pubmed.ncbi.nlm.nih.gov/40661811/  

6. 37. Feature Extraction and Segmentation Methods in Plant Disease Detection: A Multimodal 

Approach - ResearchGate, 

https://www.researchgate.net/publication/388889532_Feature_Extraction_and_Segmentation_Metho

ds_in_Plant_Disease_Detection_A_Multimodal_Approach  

https://www.ijfmr.com/
https://www.researchgate.net/publication/364741970_Concept_and_Application_of_Infrared_Thermography_for_Plant_Disease_Measurement
https://www.researchgate.net/publication/364741970_Concept_and_Application_of_Infrared_Thermography_for_Plant_Disease_Measurement
https://www.researchgate.net/publication/260278042_Early_detection_of_plant_disease_using_infrared_thermal_imaging
https://www.researchgate.net/publication/260278042_Early_detection_of_plant_disease_using_infrared_thermal_imaging
https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2020.583590/full
https://sdiopr.s3.ap-south-1.amazonaws.com/2025/JANUARY/16_Jan_2025/2024_ARJA_128118/Ms_ARJA_128118.pdf
https://sdiopr.s3.ap-south-1.amazonaws.com/2025/JANUARY/16_Jan_2025/2024_ARJA_128118/Ms_ARJA_128118.pdf
https://www.researchgate.net/publication/391610335_A_review_on_automated_plant_disease_detection_motivation_limitations_challenges_and_recent_advancements_for_future_research
https://www.researchgate.net/publication/391610335_A_review_on_automated_plant_disease_detection_motivation_limitations_challenges_and_recent_advancements_for_future_research
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=f0873dc46d0dcacde2e9a50b7ec99388bf7dcf88
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=f0873dc46d0dcacde2e9a50b7ec99388bf7dcf88
https://www.mdpi.com/2073-8994/10/7/270
https://www.semanticscholar.org/paper/Plant-Disease-Detection-Using-Image-Processing-Khirade-Patil/575467ca9dc8d7f687fe2f490f6b18932b5c45bd
https://www.semanticscholar.org/paper/Plant-Disease-Detection-Using-Image-Processing-Khirade-Patil/575467ca9dc8d7f687fe2f490f6b18932b5c45bd
https://www.analyticsvidhya.com/blog/2023/02/plant-disease-classification-using-alexnet/
https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2024.1505857/full
https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2016.01419/full
https://arccarticles.s3.amazonaws.com/OnlinePublish/Final-article-attachemnt-with-doi-D-6220-6089603e9087340b9bdcbbb1.pdf
https://arccarticles.s3.amazonaws.com/OnlinePublish/Final-article-attachemnt-with-doi-D-6220-6089603e9087340b9bdcbbb1.pdf
https://www.irjet.net/archives/V7/i4/IRJET-V7I4534.pdf
https://pmc.ncbi.nlm.nih.gov/articles/PMC12257497/
https://pubmed.ncbi.nlm.nih.gov/40661811/
https://www.researchgate.net/publication/388889532_Feature_Extraction_and_Segmentation_Methods_in_Plant_Disease_Detection_A_Multimodal_Approach
https://www.researchgate.net/publication/388889532_Feature_Extraction_and_Segmentation_Methods_in_Plant_Disease_Detection_A_Multimodal_Approach


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR250452542 Volume 7, Issue 4, July-August 2025 24 

 

7. 38. GLCM, LBP, HOG, and PHOG feature extraction analysis with ..., 

https://www.researchgate.net/figure/GLCM-LBP-HOG-and-PHOG-feature-extraction-analysis-with-

Swedish-Leaves_tbl1_344483023  

8. 39. Deep learning and content-based filtering techniques for improving plant disease identification and 

treatment recommendations: A comprehensive review - PMC, 

https://pmc.ncbi.nlm.nih.gov/articles/PMC11088271/  

9. 40. Leaf Disease Classification using CNN, LSTM & RNN | Kaggle, 

https://www.kaggle.com/code/ghazanfarali96/leaf-disease-classification-using-cnn-lstm-rnn  

10. 41. Plant Disease Detection using AI based VGG-16 Model - ResearchGate, 

https://www.researchgate.net/publication/360393706_Plant_Disease_Detection_using_AI_based_V

GG-16_Model  

11. 42. Optimizing Plant Disease Classification with Hybrid Convolutional Neural Network–Recurrent 

Neural Network and Liquid Time-Constant Network - MDPI, https://www.mdpi.com/2076-

3417/14/19/9118  

12. 43. How Convolutional Neural Networks Diagnose Plant Disease - PMC, 

https://pmc.ncbi.nlm.nih.gov/articles/PMC7706313/  

13. 44. Early Detection of Crop Diseases Using CNN Classification - NHSJS, 

https://nhsjs.com/2024/early-detection-of-crop-diseases-using-cnn-classification/  

14. 45. Convolutional neural network - Wikipedia, 

https://en.wikipedia.org/wiki/Convolutional_neural_network  

15. 46. Basic CNN Architecture: A Detailed Explanation of the 5 Layers in Convolutional Neural 

Networks - upGrad, https://www.upgrad.com/blog/basic-cnn-architecture/  

16. 47. How AlexNet Architecture Revolutionized Deep Learning - Paravision Lab, 

https://paravisionlab.co.in/alexnet-architecture/  

17. 48. AlexNet - Wikipedia, https://en.wikipedia.org/wiki/AlexNet  

18. 49. Enhanced Deep Learning Architecture for Rapid and Accurate ..., https://www.mdpi.com/2624-

7402/6/1/23  

19. 50. Plant Disease Classification using VGG-16: Performance ... - IJESAT, 

https://www.ijesat.com/ijesat/files/V23I0836_1710580381.pdf  

20. 51. A Review of Popular Deep Learning Architectures: AlexNet, VGG16, and GoogleNet, 

https://www.digitalocean.com/community/tutorials/popular-deep-learning-architectures-alexnet-vgg-

googlenet  

21. 52. VGG-16 | CNN model - GeeksforGeeks, https://www.geeksforgeeks.org/computer-vision/vgg-16-

cnn-model/  

22. 53. user1069himanshu/Plant-disease-detection: "Plant Disease Detection" is a project that utilizes the 

ResNet-50 deep learning model to predict potential diseases in plants by analyzing their leaves. The 

model has been trained on various types of plants, including potato, tomato, corn, and more, to ensure 

a wide - GitHub, https://github.com/user1069himanshu/Plant-disease-detection  

23. 54. Modified Resnet50 architecture for plant disease detection - ResearchGate, 

https://www.researchgate.net/publication/390648143_Modified_Resnet50_architecture_for_plant_di

sease_detection  

24. 55. ahaan1984/Plant-Disease-Classification: Plant Disease ... - GitHub, 

https://github.com/ahaan1984/Plant-Disease-Classification  

https://www.ijfmr.com/
https://www.researchgate.net/figure/GLCM-LBP-HOG-and-PHOG-feature-extraction-analysis-with-Swedish-Leaves_tbl1_344483023
https://www.researchgate.net/figure/GLCM-LBP-HOG-and-PHOG-feature-extraction-analysis-with-Swedish-Leaves_tbl1_344483023
https://pmc.ncbi.nlm.nih.gov/articles/PMC11088271/
https://www.kaggle.com/code/ghazanfarali96/leaf-disease-classification-using-cnn-lstm-rnn
https://www.researchgate.net/publication/360393706_Plant_Disease_Detection_using_AI_based_VGG-16_Model
https://www.researchgate.net/publication/360393706_Plant_Disease_Detection_using_AI_based_VGG-16_Model
https://www.mdpi.com/2076-3417/14/19/9118
https://www.mdpi.com/2076-3417/14/19/9118
https://pmc.ncbi.nlm.nih.gov/articles/PMC7706313/
https://nhsjs.com/2024/early-detection-of-crop-diseases-using-cnn-classification/
https://en.wikipedia.org/wiki/Convolutional_neural_network
https://www.upgrad.com/blog/basic-cnn-architecture/
https://paravisionlab.co.in/alexnet-architecture/
https://en.wikipedia.org/wiki/AlexNet
https://www.mdpi.com/2624-7402/6/1/23
https://www.mdpi.com/2624-7402/6/1/23
https://www.ijesat.com/ijesat/files/V23I0836_1710580381.pdf
https://www.digitalocean.com/community/tutorials/popular-deep-learning-architectures-alexnet-vgg-googlenet
https://www.digitalocean.com/community/tutorials/popular-deep-learning-architectures-alexnet-vgg-googlenet
https://www.geeksforgeeks.org/computer-vision/vgg-16-cnn-model/
https://www.geeksforgeeks.org/computer-vision/vgg-16-cnn-model/
https://github.com/user1069himanshu/Plant-disease-detection
https://www.researchgate.net/publication/390648143_Modified_Resnet50_architecture_for_plant_disease_detection
https://www.researchgate.net/publication/390648143_Modified_Resnet50_architecture_for_plant_disease_detection
https://github.com/ahaan1984/Plant-Disease-Classification


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR250452542 Volume 7, Issue 4, July-August 2025 25 

 

25. 56. The Basics of ResNet50 | ml-articles – Weights & Biases - Wandb, 

https://wandb.ai/mostafaibrahim17/ml-articles/reports/The-Basics-of-ResNet50---

Vmlldzo2NDkwNDE2  

26. 57. Detailed Explanation of Resnet CNN Model. | by TANISH SHARMA - Medium, 

https://medium.com/@sharma.tanish096/detailed-explanation-of-residual-network-resnet50-cnn-

model-106e0ab9fa9e  

27. 58. Plant Leaf Disease Detection by Using MobileNet and Inception - ResearchGate, 

https://www.researchgate.net/publication/392564277_Plant_Leaf_Disease_Detection_by_Using_Mo

bileNet_and_Inception  

28. 59. Plant Disease Detection using Inception V3 model and Particle ..., 

https://rifanalitica.it/index.php/journal/article/download/376/version/384/298/632  

29. 60. Plant Disease Detection Using InceptionV3 - IRJET, https://www.irjet.net/archives/V9/i6/IRJET-

V9I6426.pdf  

30. 61. Inception (deep learning architecture) - Wikipedia, 

https://en.wikipedia.org/wiki/Inception_(deep_learning_architecture)  

31. 62. Mastering Inception in Deep Learning - Number Analytics, 

https://www.numberanalytics.com/blog/ultimate-guide-inception-deep-learning  

32. 63. (PDF) DenseNet Based Model for Plant Diseases Diagnosis - ResearchGate, 

https://www.researchgate.net/publication/363776890_DenseNet_Based_Model_for_Plant_Diseases_

Diagnosis  

33. 64. A Novel Deep Learning Design of Plant Disease Recognition and Detection using VGG19, 

ResNet50, and DenseNet169 - GRENZE Scientific Society, 

https://thegrenze.com/pages/servej.php?fn=38.pdf&name=A%20Novel%20Deep%20Learning%20D

esign%20of%20Plant%20DiseaseRecognition%20and%20Detection%20using%20VGG19,%20Res

Net50,and%20DenseNet169&id=2214&association=GRENZE&journal=GIJET&year=2024&volum

e=10&issue=1  

34. 65. PLANT DISEASE CLASSIFICATION USING DENSENET ... - JETIR.org, 

https://www.jetir.org/papers/JETIR2309022.pdf  

35. 66. Introduction to DenseNet-121 - Kaggle, https://www.kaggle.com/code/iamtapendu/introduction-

to-densenet-121  

36. 67. Convolutional Networks with Dense Connectivity - Computer Science Cornell, 

https://www.cs.cornell.edu/~kilian/resources/DenseNet_Journal.pdf  

37. 68. PlantScan: Plant Disease Detection Using MobileNet - Kaggle, 

https://www.kaggle.com/code/chaimaourgani/plantscan-plant-disease-detection-using-mobilenet  

38. 69. LEAF DISEASE DETECTION USING MOBILENET - IRJET, 

https://www.irjet.net/archives/V11/i3/IRJET-V11I327.pdf  

39. 70. Plant Disease Detection Project · Models · Dataloop, 

https://dataloop.ai/library/model/diginsa_plant-disease-detection-project/  

40. 71. An illustration of MobileNet architecture to identify and classify... - ResearchGate, 

https://www.researchgate.net/figure/An-illustration-of-MobileNet-architecture-to-identify-and-

classify-diseases_fig1_372126407  

41. 72. What Is Mobilenet V2? - GeeksforGeeks, https://www.geeksforgeeks.org/computer-vision/what-

is-mobilenet-v2/  

https://www.ijfmr.com/
https://wandb.ai/mostafaibrahim17/ml-articles/reports/The-Basics-of-ResNet50---Vmlldzo2NDkwNDE2
https://wandb.ai/mostafaibrahim17/ml-articles/reports/The-Basics-of-ResNet50---Vmlldzo2NDkwNDE2
https://medium.com/@sharma.tanish096/detailed-explanation-of-residual-network-resnet50-cnn-model-106e0ab9fa9e
https://medium.com/@sharma.tanish096/detailed-explanation-of-residual-network-resnet50-cnn-model-106e0ab9fa9e
https://www.researchgate.net/publication/392564277_Plant_Leaf_Disease_Detection_by_Using_MobileNet_and_Inception
https://www.researchgate.net/publication/392564277_Plant_Leaf_Disease_Detection_by_Using_MobileNet_and_Inception
https://rifanalitica.it/index.php/journal/article/download/376/version/384/298/632
https://www.irjet.net/archives/V9/i6/IRJET-V9I6426.pdf
https://www.irjet.net/archives/V9/i6/IRJET-V9I6426.pdf
https://en.wikipedia.org/wiki/Inception_(deep_learning_architecture)
https://www.numberanalytics.com/blog/ultimate-guide-inception-deep-learning
https://www.researchgate.net/publication/363776890_DenseNet_Based_Model_for_Plant_Diseases_Diagnosis
https://www.researchgate.net/publication/363776890_DenseNet_Based_Model_for_Plant_Diseases_Diagnosis
https://thegrenze.com/pages/servej.php?fn=38.pdf&name=A%20Novel%20Deep%20Learning%20Design%20of%20Plant%20DiseaseRecognition%20and%20Detection%20using%20VGG19,%20ResNet50,and%20DenseNet169&id=2214&association=GRENZE&journal=GIJET&year=2024&volume=10&issue=1
https://thegrenze.com/pages/servej.php?fn=38.pdf&name=A%20Novel%20Deep%20Learning%20Design%20of%20Plant%20DiseaseRecognition%20and%20Detection%20using%20VGG19,%20ResNet50,and%20DenseNet169&id=2214&association=GRENZE&journal=GIJET&year=2024&volume=10&issue=1
https://thegrenze.com/pages/servej.php?fn=38.pdf&name=A%20Novel%20Deep%20Learning%20Design%20of%20Plant%20DiseaseRecognition%20and%20Detection%20using%20VGG19,%20ResNet50,and%20DenseNet169&id=2214&association=GRENZE&journal=GIJET&year=2024&volume=10&issue=1
https://thegrenze.com/pages/servej.php?fn=38.pdf&name=A%20Novel%20Deep%20Learning%20Design%20of%20Plant%20DiseaseRecognition%20and%20Detection%20using%20VGG19,%20ResNet50,and%20DenseNet169&id=2214&association=GRENZE&journal=GIJET&year=2024&volume=10&issue=1
https://www.jetir.org/papers/JETIR2309022.pdf
https://www.kaggle.com/code/iamtapendu/introduction-to-densenet-121
https://www.kaggle.com/code/iamtapendu/introduction-to-densenet-121
https://www.cs.cornell.edu/~kilian/resources/DenseNet_Journal.pdf
https://www.kaggle.com/code/chaimaourgani/plantscan-plant-disease-detection-using-mobilenet
https://www.irjet.net/archives/V11/i3/IRJET-V11I327.pdf
https://dataloop.ai/library/model/diginsa_plant-disease-detection-project/
https://www.researchgate.net/figure/An-illustration-of-MobileNet-architecture-to-identify-and-classify-diseases_fig1_372126407
https://www.researchgate.net/figure/An-illustration-of-MobileNet-architecture-to-identify-and-classify-diseases_fig1_372126407
https://www.geeksforgeeks.org/computer-vision/what-is-mobilenet-v2/
https://www.geeksforgeeks.org/computer-vision/what-is-mobilenet-v2/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR250452542 Volume 7, Issue 4, July-August 2025 26 

 

42. 73. Mobilenet V2 Architecture in Computer Vision - GeeksforGeeks, 

https://www.geeksforgeeks.org/computer-vision/mobilenet-v2-architecture-in-computer-vision/  

43. 74. (PDF) Long Short-Term Memory Recurrent Neural Networks for ..., 

https://www.researchgate.net/publication/359060439_Long_Short-

Term_Memory_Recurrent_Neural_Networks_for_Plant_disease_Identification  

44. 75. Long Short-Term Memory Recurrent Neural Networks for Plant disease Identification - Semantic 

Scholar, https://pdfs.semanticscholar.org/8b16/5e56f26d721bb40cf9d27132df608af656cd.pdf  

45. 76. Architecture of RNN and LSTM Model · Deep Learning, https://ebetica.github.io/pytorch-Deep-

Learning/en/week06/06-3/  

46. 77. Introduction to Recurrent Neural Networks - GeeksforGeeks, 

https://www.geeksforgeeks.org/machine-learning/introduction-to-recurrent-neural-network/  

47. 78. Predictions on different kinds of pests and diseases with LSTM network. - ResearchGate, 

https://www.researchgate.net/figure/Predictions-on-different-kinds-of-pests-and-diseases-with-

LSTM-network_tbl2_326205062  

48. 79. LSTMLayer - Long short-term memory (LSTM) layer for recurrent neural network (RNN) - 

MATLAB - MathWorks, 

https://www.mathworks.com/help/deeplearning/ref/nnet.cnn.layer.lstmlayer.html  

49. 80. Long short-term memory - Wikipedia, https://en.wikipedia.org/wiki/Long_short-term_memory  

50. 81. YOLO Object Detection Explained: Evolution, Algorithm, and Applications - Encord, 

https://encord.com/blog/yolo-object-detection-guide/  

51. 82. The AlexNet architecture | Download Scientific Diagram - ResearchGate, 

https://www.researchgate.net/figure/The-AlexNet-architecture_fig3_348267694  

52. 83. SerpensGate-YOLOv8: an enhanced YOLOv8 model for ... - Frontiers, 

https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2024.1514832/full  

53. 84. YOLO Object Detection Explained: A Beginner's Guide - DataCamp, 

https://www.datacamp.com/blog/yolo-object-detection-explained  

54. 85. (PDF) Enhanced Leaf Disease Segmentation Using U‐Net Architecture for Precision Agriculture: 

A Deep Learning Approach - ResearchGate, 

https://www.researchgate.net/publication/393670462_Enhanced_Leaf_Disease_Segmentation_Using

_U-Net_Architecture_for_Precision_Agriculture_A_Deep_Learning_Approach  

55. 86. UNet Architecture Explained In One Shot [TUTORIAL] - Kaggle, 

https://www.kaggle.com/code/akshitsharma1/unet-architecture-explained-in-one-shot-tutorial  

56. 87. U-Net Architecture Explained - GeeksforGeeks, https://www.geeksforgeeks.org/machine-

learning/u-net-architecture-explained/  

57. 88. LeafDNet: Transforming Leaf Disease Diagnosis Through Deep Transfer Learning - PMC, 

https://pmc.ncbi.nlm.nih.gov/articles/PMC11815709/  

58. 89. Deep learning and explainable AI for classification of potato leaf diseases - Frontiers, 

https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2024.1449329/full  

59. 90. Plant leaf disease detection using vision transformers for precision agriculture - PMC, 

https://pmc.ncbi.nlm.nih.gov/articles/PMC12216567/  

60. 91. Explainable AI for Plant Leaf Disease Detection: Techniques, Applications, and Future Directions 

- The Academic is an International Journal of Multidisciplinary Research, https://theacademic.in/wp-

content/uploads/2024/08/22.pdf  

https://www.ijfmr.com/
https://www.geeksforgeeks.org/computer-vision/mobilenet-v2-architecture-in-computer-vision/
https://www.researchgate.net/publication/359060439_Long_Short-Term_Memory_Recurrent_Neural_Networks_for_Plant_disease_Identification
https://www.researchgate.net/publication/359060439_Long_Short-Term_Memory_Recurrent_Neural_Networks_for_Plant_disease_Identification
https://pdfs.semanticscholar.org/8b16/5e56f26d721bb40cf9d27132df608af656cd.pdf
https://ebetica.github.io/pytorch-Deep-Learning/en/week06/06-3/
https://ebetica.github.io/pytorch-Deep-Learning/en/week06/06-3/
https://www.geeksforgeeks.org/machine-learning/introduction-to-recurrent-neural-network/
https://www.researchgate.net/figure/Predictions-on-different-kinds-of-pests-and-diseases-with-LSTM-network_tbl2_326205062
https://www.researchgate.net/figure/Predictions-on-different-kinds-of-pests-and-diseases-with-LSTM-network_tbl2_326205062
https://www.mathworks.com/help/deeplearning/ref/nnet.cnn.layer.lstmlayer.html
https://en.wikipedia.org/wiki/Long_short-term_memory
https://encord.com/blog/yolo-object-detection-guide/
https://www.researchgate.net/figure/The-AlexNet-architecture_fig3_348267694
https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2024.1514832/full
https://www.datacamp.com/blog/yolo-object-detection-explained
https://www.researchgate.net/publication/393670462_Enhanced_Leaf_Disease_Segmentation_Using_U-Net_Architecture_for_Precision_Agriculture_A_Deep_Learning_Approach
https://www.researchgate.net/publication/393670462_Enhanced_Leaf_Disease_Segmentation_Using_U-Net_Architecture_for_Precision_Agriculture_A_Deep_Learning_Approach
https://www.kaggle.com/code/akshitsharma1/unet-architecture-explained-in-one-shot-tutorial
https://www.geeksforgeeks.org/machine-learning/u-net-architecture-explained/
https://www.geeksforgeeks.org/machine-learning/u-net-architecture-explained/
https://pmc.ncbi.nlm.nih.gov/articles/PMC11815709/
https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2024.1449329/full
https://pmc.ncbi.nlm.nih.gov/articles/PMC12216567/
https://theacademic.in/wp-content/uploads/2024/08/22.pdf
https://theacademic.in/wp-content/uploads/2024/08/22.pdf


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR250452542 Volume 7, Issue 4, July-August 2025 27 

 

61. 92. Explainable Artificial Intelligence techniques for interpretation of food datasets: a review, 

https://arxiv.org/html/2504.10527v1  

62. 93. www.americaspg.com, 

https://www.americaspg.com/article/pdf/3929#:~:text=Zhang%20et%20al.,central%20server%2C%2

0thereby%20preserving%20privacy.  

63. 94. PlantVillage Dataset - Machine Learning Datasets, 

https://datasets.activeloop.ai/docs/ml/datasets/plantvillage-dataset/  

64. 95. PlantCLEF2025 @ LifeCLEF & CVPR-FGVC - Kaggle, 

https://www.kaggle.com/competitions/plantclef-2025  

65. 96. Overview of PlantCLEF 2024: Multi-species Plant Identification in Vegetation Plot Images - 

CEUR-WS.org, https://ceur-ws.org/Vol-3740/paper-187.pdf  

66. 97. Overview of PlantCLEF 2024: multi-species plant identification in vegetation plot images¿ - Les 

Publications du Cirad, https://publications.cirad.fr/une_notice.php?dk=613025  

67. 98. PlantCLEF2022 | ImageCLEF / LifeCLEF - Multimedia Retrieval in CLEF, 

https://www.imageclef.org/PlantCLEF2022  

68. 99. Plant Leaf Disease Detection Using Deep Learning: A Multi-Dataset Approach, 

https://www.researchgate.net/publication/385724578_Plant_Leaf_Disease_Detection_Using_Deep_

Learning_A_Multi-Dataset_Approach  

69. 100. A Lightweight and Efficient Plant Disease Detection Method Integrating Knowledge Distillation 

and Dual-Scale Weighted Convolutions - MDPI, https://www.mdpi.com/1999-4893/18/7/433  

70. 101. New Plant Diseases Dataset - Kaggle, https://www.kaggle.com/datasets/vipoooool/new-plant-

diseases-dataset  

71. 102. Plants Diseases Detection And Classification Dataset - Google, 

https://toolbox.google.com/datasetsearch/search?query=diseases%20-site%3Akaggle.com  

72. 103. An advanced deep learning models-based plant disease detection: A review of recent research - 

PMC - PubMed Central, https://pmc.ncbi.nlm.nih.gov/articles/PMC10070872/ 

https://www.ijfmr.com/
https://arxiv.org/html/2504.10527v1
https://www.americaspg.com/article/pdf/3929#:~:text=Zhang%20et%20al.,central%20server%2C%20thereby%20preserving%20privacy
https://www.americaspg.com/article/pdf/3929#:~:text=Zhang%20et%20al.,central%20server%2C%20thereby%20preserving%20privacy
https://datasets.activeloop.ai/docs/ml/datasets/plantvillage-dataset/
https://www.kaggle.com/competitions/plantclef-2025
https://ceur-ws.org/Vol-3740/paper-187.pdf
https://publications.cirad.fr/une_notice.php?dk=613025
https://www.imageclef.org/PlantCLEF2022
https://www.researchgate.net/publication/385724578_Plant_Leaf_Disease_Detection_Using_Deep_Learning_A_Multi-Dataset_Approach
https://www.researchgate.net/publication/385724578_Plant_Leaf_Disease_Detection_Using_Deep_Learning_A_Multi-Dataset_Approach
https://www.mdpi.com/1999-4893/18/7/433
https://www.kaggle.com/datasets/vipoooool/new-plant-diseases-dataset
https://www.kaggle.com/datasets/vipoooool/new-plant-diseases-dataset
https://toolbox.google.com/datasetsearch/search?query=diseases%20-site%3Akaggle.com

