
 

International Journal for Multidisciplinary Research (IJFMR) 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com   ●   Email: editor@ijfmr.com 

 

IJFMR250452673 Volume 7, Issue 4, July-August 2025 1 

 

Effective Payroll Processing system for Retail 

Employees using Databricks Ingestion Framework 

and Salesforce Approval Workflow 
 

Vamshi Krishna Malthummeda 
 

mvamsikhyd@gmail.com 

 

Abstract: 

An effective payroll processing system is a hallmark of a well-functioning organization which provides 

key benefits like accurate calculations of wages, taxes, benefits, adherence to compliance & regulations 

and finally Improved Employee satisfaction along with low attrition rate. This paper proposes a solution 

for payroll processing by leveraging Databricks (built on Apache Spark which can handle massive 

datasets and perform complex computations) and Salesforce approval workflow (helps in review & 

routing of timesheet approval requests, enables quicker decision making, helps in tracking progress and 

status of timesheet approvals and provides comprehensive audit trail). In the proposed solution the 

databricks job will process raw data files containing employee information, retail chain hierarchy 

information, benefits information, employee task assignment information, login activity information, 

scheduling information etc. and prepare the timesheet dataset and pushes it into Salesforce connected 

App for approval process using out of the box bulk API 2.0 REST call. The solution saves lot of time for 

application maintenance team during the weekly payroll processing day, very adaptable to the new 

compliance rules, provides higher levels of satisfaction by compensating timely and helps higher 

management in making informed decisions. The proposed framework offers a resilient, scalable, 

secured and accurate solution which results in better analytics and workforce retention. 

 

Solution Description: 

Initially the datasets required for payroll processing of the store employees identified which includes:  

• Employee Information (Name, ID, P&L Area, Employment Type (Part-Time/Full-Time), Employment 

Status (Active, Inactive, Terminated), Joining Date etc.). 

• Retail chain Hierarchy information (Employee-ID, Manager-ID, Department-ID, etc.) 

• Benefits Information (Casual, Sick, Bereavement Leaves, Over-time, Per-Diem, Weekend, Night Shift 

Allowances, Performance, Safety Bonuses). 

• Employee Task Assignment Information (Task ID, Task Name, Task rate, Task Type etc. (some employees 

are paid per task not hourly)). 

• Scheduling Information (Schedule related information like whether the work schedule is 3-day/4-day/5-

dy-/6-day a week for the given employee, start time and end time, start day of the schedule, end day of 

the schedule). 

• Login Tracking Information (hours of service for all the employees). 

• Approval Information (Provides the approval status of timesheets & timesheet information for payroll 

processing).  

• Miscellaneous Expense Information (Travel Costs, Lodging & Stay costs, Cell-Phone charges etc.) 

 

 

 

 

https://www.ijfmr.com/
mailto:mvamsikhyd@gmail.com


 

International Journal for Multidisciplinary Research (IJFMR) 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com   ●   Email: editor@ijfmr.com 

 

IJFMR250452673 Volume 7, Issue 4, July-August 2025 2 

 

The data is received from various systems into the databricks data lake in the following ways: 

• CDC/Full snapshot data from databases will be pulled into databricks data lake volumes using Amazon 

Data Migration Service or Databricks Connectors on a given schedule or gets triggered on availability of 

CDC/Full snapshot as per the configuration and the data will be stored in parquet format. 

• Some source systems will push the data into databricks volume as per the schedule in various types of 

formats like JSON, CSV, Excel, XML, ORC etc. 

• Data from some source systems will be pulled into databricks data lake using python/power shell scripts 

by calling the source system REST API and stored in formats like JSON, CSV etc. 

 

Following are the various phases in the payroll processing system: 

o Data Extraction Phase: During this phase data from various systems will be extracted in various ways 

as specified above into the databricks data lake volumes and stored in the native format. Except parquet 

& ORC formats, all other formats doesn’t have schema defined. 

o Data Ingestion Phase: During this phase data will be loaded into the Spark data frames as spark can read 

various file formats including excel (needs to install com.crealytics.spark.excel plugin which is available 

in the form of jar files and all other formats are natively supported). Once the data is loaded into the spark 

data frames it is subjected to cleansing, filtering and augmenting. Also, schema is attached to the data 

using configurable schema.json files which doesn’t have schema inherently with them. Data will be 

ultimately stored in databricks unity catalog tables. 

o Data Transformation Phase: By this phase all the data required for applying the business rules will be 

available and during this phase data is transformed and aggregated using the business rules and the outputs 

will be again stored as separate UC tables which will be in ready to consume state. 

o Data Export Phase: During this phase the transformed data(Timesheet data and Employee Hierarchy 

data) will be exported to Salesforce using Salesforce Bulk API 2.0(which will be discussed later) or 

Payroll data (Approved timesheet data from Salesforce will be extracted into Databricks data lake in 

CSV format and will be subjected to Ingestion and Transformation Phases) which will be exported into 

Payroll system using the standard REST API call. 

   

 
 

Jobs Description: 

The jobs related Data Ingestion, Data Transformation & Data Export phases are executed in Databricks 

whereas the Data Extraction phase related jobs are executed outside of databricks. To orchestrate the entire 

data pipeline, we use orchestration tools like Apache Airflow, ActiveBatch or BMC software. There are 3 

types of jobs executed in the entire Payroll Processing system workflow. 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com   ●   Email: editor@ijfmr.com 

 

IJFMR250452673 Volume 7, Issue 4, July-August 2025 3 

 

o Bi-Daily ActiveBatch/Airflow Job: This job executes daily twice which prepares the timesheet dataset 

and exports to Salesforce to kick-off the approval workflow of timesheets 

o Weekly Job: This job ensures all the timesheets are approved and sends the reminders to approvers to 

approve the pending approval timesheets and escalates to their superiors if not worked on. 

o Payroll Processing Weekly Job: This Job prepares the payroll file after all the business validations & 

approvals. Sends it to the Payroll system to generate Paystubs and for direct deposits to Employee 

accounts. 

 

Export to Salesforce Process: 

o Step 1 : Need to get authenticated with Salesforce Connected App by providing following details in REST 

API post request payload at the authentication Url which ends with “services/oauth2/token”: 

payload ={  

 ‘grant_type’: ‘password’, 

‘client_id’: client_id, 

‘client_secret’: client_secret, 

‘username’: username, 

‘password’: password + security_token(optional) 

} 

On successful authentication will receive access_token and instance_url in the response. 

o Step 2: After successful authentication, Before export to the salesforce the record count and size of 

the dataset to be exported is determined. If the record count < 2000 records then export using synchronous 

post API call by providing following details using the access toke and instance url from above authentication 

response: 

• API_VERSION = 'vxx.x' (Use your own desired API version)  

• OBJECT_NAME = 'Contact' (can be any standard object or custom object. Here Contact is used for 

example) 

• API_ENDPOINT = f"{instance_url}/services/data/{API_VERSION}/sobjects/{OBJECT_NAME}/  

• headers = { 

  'Authorization': f'Bearer {access_token}',  

'Content-Type': 'application/json',  

'Accept': 'application/json' 

 } 

The request payload should be in JSON format   

If the record count > 2000 and recordset size < 150 MB then we need to initiate an asynchronous call which 

involves following steps: 

o create_bulk_job(post request)  

o BULK_API_URL = f"{INSTANCE_URL}/services/data/{API_VERSION}/jobs/ingest" 

o headers = { ‘Authorization': f'Bearer {ACCESS_TOKEN}', 'Content-Type': 'application/json',  'Accept': 

'application/json' } 

o job_payload = { "operation": operation, (either insert or upsert) 

"object": object_name,(Name of the object like Account, Contract or TransactionJournal or any other  custom 

object 

"contentType": contentType,  

"externalIdFieldName": "Id" # Optional: Define if you are upserting 

 } 

o The response object contains the job_id which will be used in subsequent steps 

o upload_data_to_job(put request) 

o upload_url = f"{BULK_API_URL}/{job_id}/batches" 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com   ●   Email: editor@ijfmr.com 

 

IJFMR250452673 Volume 7, Issue 4, July-August 2025 4 

 

o headers = { 'Authorization': f'Bearer {ACCESS_TOKEN}', 'Content-Type': 'text/csv', }(only csv data 

can be passed for API 2.0) 

o close_job(patch request) 

o Sends a PATCH request to set the job state to 'UploadComplete' 

o job_url = f"{INSTANCE_URL}/services/data/{API_VERSION}/jobs/ingest/{job_id}" 

o headers = { 'Authorization': f'Bearer {ACCESS_TOKEN}', 'Content-Type': 'application/json', 'Accept': 

'application/json' } 

o payload = { "state": "UploadComplete" } 

After the close_job call is finished then insert/upsert is initiated asynchronously on the Salesforce side. 

o check_job_status: to monitor the job status  

o collect_results: to collect the successful record salesforce ids and failed record salesforce_ids 

If the record set size > 150 MB then multiple asynchronous calls need to be initiated but only 150 million 

records can be initiated in a day. 

Below is the flow chart explaining the entire Salesforce Bulk 2.0 API call 

 

 
 

CONCLUSION 

The above solution is the Payroll Processing system created with minimum investment with all the heavy 

lifting happening in the Databricks environment and utilizing the out of the box features on Salesforce. 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com   ●   Email: editor@ijfmr.com 

 

IJFMR250452673 Volume 7, Issue 4, July-August 2025 5 

 

REFERENCES: 

1. AWS Documentation for DMS: What is AWS Database Migration Service? - AWS Database Migration 

Service 

2. Databricks Documentation: What is a Medallion Architecture? 

3. Salesforce Documentation: Bulk API 2.0 | Bulk API 2.0 and Bulk API Developer Guide | Salesforce 

Developers. 

https://www.ijfmr.com/
https://docs.aws.amazon.com/dms/latest/userguide/Welcome.html
https://docs.aws.amazon.com/dms/latest/userguide/Welcome.html
https://www.databricks.com/glossary/medallion-architecture
https://developer.salesforce.com/docs/atlas.en-us.api_asynch.meta/api_asynch/bulk_api_2_0.htm
https://developer.salesforce.com/docs/atlas.en-us.api_asynch.meta/api_asynch/bulk_api_2_0.htm

