

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250452779 Volume 7, Issue 4, July-August 2025 1

Recap-Reinforced, Explainable, and Cost-

Aware Prompting: A Framework for

Understandable Prompt Optimization Based on

Cognitive Science

Raghupathi Appala1, Pallavi Tejaswi 2, Maanasa Kotte3

1,2,3Student, CSE, Chaitanya Bharathi Institute of Technology (A), Hyderabad, India

Abstract

Maximizing the effectiveness of Large Language Models (LLMs) requires prompt optimization, but

existing approaches frequently have limited interpretability, high computational cost, and narrow

generalization. We introduce RECAP, a modular, cognitively based framework for explainable and

automated prompt engineering. Neurofeedback-based self-scoring, evolutionary prompt graph search,

contrastive-symbolic rule induction, Pareto-based cost-accuracy optimization, an interactive debugging

interface, and a shared inter-module memory layer are the six main innovations it presents. Without the

need for model fine-tuning, RECAP lowers token, latency, and memory overhead while increasing prompt

quality and LLM accuracy. It offers a scalable and interpretable substitute for conventional tuning

pipelines and can be used in a variety of fields, including conversational AI and search.

Keywords: Neuro-symbolic Optimization, Self-Scoring, Contrastive Rule Induction, Evolutionary

Prompt Graph, Token Efficiency, Cost-Aware Prompting, Cognitive Failure Analysis, Human-in-the-

Loop AI, Pareto Optimization.

Introduction

Large Language Models (LLMs) like GPT-4, Claude, and PaLM have brought in a new era in natural

language processing. They show impressive abilities across various tasks such as answering questions,

summarizing information, generating code, and logical reasoning. However, these models are very

sensitive to how input prompts are phrased, structured, and presented. Even small changes in the wording

of a prompt can lead to big changes in model performance. This can affect the accuracy, coherence, and

truthfulness of the outputs. This sensitivity has led to the rise of prompt engineering, which focuses on

creating and improving inputs to guide LLMs toward better responses.

Currently, prompt engineering is mostly done manually. It relies on guesswork and is hard to systematize.

Most methods depend on trial-and-error adjustments or informal best practices. This makes them labor-

intensive and not very suitable for scaling in real-world situations. Furthermore, existing automated

techniques tend to have three main drawbacks: (1) they are not easy to understand, acting as black-box

optimizers with no clarity on why a prompt works; (2) they bring heavy computational costs, often needing

repeated access to expensive LLM APIs; and (3) they use simple or fragile optimization tricks, which do

not work well across different areas and types of prompts. These issues are particularly troublesome in

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250452779 Volume 7, Issue 4, July-August 2025 2

environments that require high throughput and low latency, where computational efficiency and decision

traceability are critical.

To tackle these problems, we present RECAP-Reinforced, Explainable, and Cost-Aware Prompting

, a new framework for automated, interpretable, and resource-conscious prompt optimization. Unlike

existing systems that view prompt engineering as a static issue, RECAP sees it as a dynamic, modular

process grounded in cognitive principles. The framework is based on six closely connected innovations:

• Neurofeedback-driven self-scoring, which allows for self-evaluation of model outputs using clear

criteria and understandable reasons for failures.

• Contrastive-symbolic rule induction, which learns human-understandable prompt insights by

comparing successful and unsuccessful prompts with a mix of neural and symbolic techniques.

• Evolutionary graph-based prompt decoding, which treats prompt improvement as an intelligent

exploration of a structured design space using reinforcement learning and neuroevolution.

• Pareto-optimal token-aware optimization, which balances performance with speed, memory use, and

token consumption through multi-objective searching.

• Reflexive debugging interface, a visual dashboard that lets users examine, compare, and modify the

prompt development process.

• Inter-module shared memory layer, which allows for shared context across modules, improving joint

reasoning and cutting down on repetition.

By combining symbolic reasoning, neural optimization, and interactive visualization, RECAP goes

beyond traditional prompt engineering methods. It provides a clear, efficient, and scalable solution that

works across different task areas. This approach removes the need for costly model fine-tuning and makes

high-quality LLM prompting easier for businesses, research, and important decision-making scenarios.

In this paper, we explain the design and operational flow of RECAP. We also present empirical evaluations

across several LLM tasks and assess its performance regarding accuracy, interpretability, and

computational efficiency. Our findings show that RECAP consistently creates better prompts compared

to baseline methods, leading to impactful LLM outputs while lowering costs and increasing transparency..

1. Related Works and comparative analysis

Many frameworks have emerged to tackle the challenges of prompt optimization for Large Language

Models (LLMs). Each has its own design philosophy and trade-offs. In this section, we evaluate current

solutions based on the features of RECAP, focusing on four main areas: interpretability, efficiency,

adaptability, and usability.

MAPS [1] is one of the earlier frameworks. It groups failure cases by using edit-distance heuristics. While

it effectively identifies surface-level prompt problems, MAPS lacks depth in its understanding and is tied

to fixed prompt structures, which limits its adaptability across tasks. In contrast, RECAP uses semantic

rule induction and dynamic graph-based traversal. This approach allows for a deeper understanding and

generalization across various failure contexts.

PHASEEVO [2] and AutoPDL [3] rely on heuristic rewriting and static rule generation. Although they

are light in terms of computation, they suffer from fragile logic and limited interpretability when dealing

with complex and ambiguous tasks. RECAP fixes these issues through a feedback mechanism that learns

from runtime failures and supports evolving rules.

DSPy [4] presents a domain-specific language (DSL) for modular prompt composition. However, it does

not provide clear error diagnosis or runtime introspection. In comparison, RECAP offers explainable error

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250452779 Volume 7, Issue 4, July-August 2025 3

tracing, cognitive failure visualization, and a human-in-the-loop debugging interface, allowing thorough

user intervention.

MIPROv2 [5], which focuses on optimizing frozen models, along with reinforcement-learning systems

like InstructZero [6], PPO-Prompt [7], and PromptAgent [8], show notable performance improvements.

Yet, they often lack transparency, incur high computational costs, and are less suitable for limited

environments. RECAP tackles these challenges by using a Pareto-front optimizer to balance accuracy,

latency, and resource use.

EvoPrompt [9] and AdaPrompt [10] provide adaptability through evolutionary search and control-token

strategies. While EvoPrompt shares a mutation-based refinement approach with RECAP, it does not

include self-scoring, symbolic rule learning, or inter-module memory-key features that ensure coherent

and traceable prompt paths as seen in RECAP.

Recent initiatives like LM-Critic [11] and PEZ [12] focus on aligning outputs with human preferences or

using embedding-guided prompting. While these methods are useful for zero-shot generalization, they do

not offer structured error reasoning, rule induction, or interactive debugging—essential components

present in RECAP.

In conclusion, most existing frameworks tend to favor either performance or efficiency, often sacrificing

interpretability and adaptability. RECAP stands out by bringing together semantic reasoning, dynamic

optimization, and human-in-the-loop transparency. This integrated design allows for strong, flexible, and

cognitively aligned prompt engineering, pushing the boundaries of LLM usability in practical situations.

2. Our Approach and Solution proposed

RECAP is a flexible and understandable framework that sees prompt optimization as a structured

workflow instead of a hidden tuning process. It features a pipeline made up of six closely connected

modules. Each module tackles a key challenge in prompt engineering, covering evaluation, rule discovery,

exploration, optimization, and interactive refinement. Our solution is designed to work with various

models, be efficient, and apply to different NLP tasks.

Below, we outline the main components of RECAP:

2.1. Neurofeedback-Driven Self-Scoring

Traditional methods for evaluating prompts often depend on outside metrics or human feedback. RECAP

uses a self-scoring module inspired by neurofeedback. This allows the LLM to evaluate the quality of its

own outputs. The module captures confidence signals from the model's token distribution, measures

entropy, and analyzes coherence patterns to assign utility scores without needing additional external tools.

These self-assessments act as key signals for optimization, greatly reducing the need for repeated hidden

executions.

2.2. Contrastive-Symbolic Rule Induction

At the core of RECAP is a prompt pattern discovery engine that combines symbolic reasoning with

contrastive learning. By examining successful and unsuccessful prompt-response pairs, this module

creates general, human-readable rules—like syntactic structures, lexical hints, and patterns—that show

the difference between effective prompts and ineffective ones. This approach provides clear insights into

what makes a prompt successful and enhances explainability in automated prompt creation.

2.3. Evolutionary Prompt Graph Decoder

Instead of relying on fixed templates or greedy sampling, RECAP uses an evolutionary prompt graph

decoding algorithm which views the prompt space as a dynamic graph. Each node represents a prompt

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250452779 Volume 7, Issue 4, July-August 2025 4

variant, and the edges show syntactic or semantic changes driven by learned mutation operators. Through

simulated evolution—including crossover, mutation, and selection based on fitness—the system

efficiently explores a wide range of strong prompt variants compared to brute-force or gradient-free

approaches.

2.4. Pareto-Front Cost-Aware Optimization

Understanding that prompt quality involves multiple dimensions, RECAP includes a Pareto-front

optimizer that balances competing goals like response accuracy, speed, token cost, and memory use.

Instead of focusing on a single loss, the system looks for a range of solutions that offer the best trade-offs,

allowing users to choose prompts that fit best for real-time systems, embedded use, or high-volume

inference settings. This changes prompt optimization into a decision-making process that considers both

resources and task needs.

2.5. Reflexive Debugging and Steering Interface

To support human oversight and intervention, RECAP provides a reflexive debugging interface. This is

an interactive space where developers can examine prompt-response paths, review induced rules, track

decisions, and intervene as needed. This feature changes prompt engineering from a trial-and-error process

into a guided, collaborative, and trackable experience. It's particularly useful for sensitive areas like

healthcare, law, or finance.

2.6. Inter-Module Shared Memory Layer

The whole RECAP pipeline relies on a shared inter-module memory layer. This knowledge bus lets each

component share intermediate artifacts, feedback signals, and change histories. This setup promotes

consistent context sharing, supports ongoing learning, and enables reasoning across modules, ensuring

every part of the pipeline benefits from the system's combined knowledge.

1. Design of proposed solution

Component Diagram

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250452779 Volume 7, Issue 4, July-August 2025 5

Use case diagram

Sequence diagram

Deployment diagram

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250452779 Volume 7, Issue 4, July-August 2025 6

4. RECAP Architecture

This section highlights key improvements in RECAP, a new system for optimizing prompt engineering

using clear, modular, and grounded methods.

4.1. Runtime-Aware Feedback Module, Neurofeedback with Self-Scoring

Limitations in prior systems: Existing prompt optimization frameworks usually depend on static failure

modes like edit distance, token mismatch, or general error types, which offer little insight into the causes

of failure.

RECAP enhancements:

• Includes trace and explanation graphs to track failure patterns and identify causes in prompt-response

sequences.

• Uses LLM-generated rationales (e.g., GPT-4o) for introspective explanations of task failures.

• Introduces self-scoring mechanisms, where the model assesses its own output against reference

answers using rubric-based comparisons.

• Enables tracking of prompt trajectories, allowing for long-term analysis of how changes in prompts

affect model behavior over multiple runs.

This shift from simple logging to tracing cognitive failures creates valuable feedback loops for improving

prompts.

4.2. Semantic Rule Induction, Contrastive + Symbolic Hybrid Learning

Limitations in prior systems: Traditional clustering methods rely on superficial token overlaps or edit-

distance rules, resulting in weak and unclear patterns.

RECAP enhancements:

• Uses contrastive learning between failure and success prompt pairs to draw meaningful decision

boundaries.

• Integrates symbolic grammar induction to create human-readable rules, like logical constraints and

quantifier-based heuristics.

• Supports rules such as: "If failures cluster around negation-based prompts, use zero-shot analogical

framing."

This method connects neural representations with symbolic reasoning, allowing for understandable

generalizations across prompt types.

4.3. Dynamic Prompt Generator, Evolutionary Graph Decoder

Limitations in prior systems: Prompt searches are often limited to basic token-level edits or linear changes,

failing to fully explore the design space.

RECAP enhancements:

• Builds a Prompt Graph, where nodes represent prompt variations and edges denote specific mutation

methods (e.g., adding examples, changing styles).

• Uses neuroevolutionary search and reinforcement learning (RL) to explore this graph adaptively.

• Optimizes traversal techniques to prioritize error correction, diversity improvement, and token

efficiency.

• This approach turns prompt engineering into a structured exploration challenge, enabling smart,

history-informed refinement.

4.4. Token-Aware Optimizer, Cost-Conscious Pareto Front Search

Limitations in prior systems: Prompt optimization often ignores resource constraints, focusing only on

accuracy metrics.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250452779 Volume 7, Issue 4, July-August 2025 7

RECAP enhancements:

• Employs multi-objective optimization using Pareto front analysis across various dimensions, such as

accuracy, latency, memory usage, and token cost.

• Creates a reward function that balances performance with computational efficiency.

• Automatically filters out less efficient prompts that trade high costs for slight accuracy gains.

• This ensures cost-aware optimization, leading to prompts that perform well while being resource-

efficient.

4.5. Human-in-the-Loop Layer, Reflexive Debugging Interface

Limitations in prior systems: Most systems provide limited interactivity, usually only offering

configuration files or basic APIs.

RECAP enhancements:

Features a visual, interactive UI (built in React) that shows:

• Prompt mutation histories

• Applied rules and their effects

• Interactive comparisons between prompt versions

• Offers failure drilldowns, revealing error reasons and response differences.

• Supports user involvement, such as locking specific modules, adding counterfactuals, or setting

constraints.

This allows for reflexive debugging, enabling users to examine, understand, and guide the evolution of

prompts with detailed control.

4.6. Inter-Module Memory Layer (New), Shared State Communication Bus

Limitations in prior systems: Prompt modules work in isolation, resulting in disconnected or redundant

feedback.

RECAP enhancements:

• Implements a shared memory layer (e.g., using vector databases or token state caches) that retains

intermediate states, prompt results, and rule applications.

• Allows all modules to read from and write to this shared context, promoting better integration

throughout the pipeline.

• Enables scenarios where the rule induction module adjusts based on failure patterns seen by the

dynamic prompt generator.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250452779 Volume 7, Issue 4, July-August 2025 8

Workflow Diagram

Architecture Diagram

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250452779 Volume 7, Issue 4, July-August 2025 9

5. Limitations of RECAP

Even with RECAP's advantages in adaptive prompt optimization, there are still a number of drawbacks

that call for more research and technical improvement.

5.1 LLM-Based Feedback's Computational Cost

Large language models (LLMs), like GPT-4, are used by RECAP to produce justifications, explanations,

and self-scores. Deploying this dependency in real-time or resource-constrained environments is difficult

due to the substantial computational overhead it introduces. Future research might look into using task-

specific or distilled LLMs to lower inference costs without sacrificing response quality.

5.2 Reliance on Real-World Information

Access to trustworthy ground truth outputs is necessary for the framework's feedback mechanisms, such

as contrastive learning and self-scoring. Feedback signals become noisy and unreliable in domains that

are unclear or have limited resources, particularly open-ended generation tasks. Enhancing few-shot

references or adding human-in-the-loop verification can boost training stability and feedback quality.

5.3 Tradeoff between Interpretability and Performance

For interpretability, RECAP places a strong emphasis on the induction of symbolic rules. In contrast to

end-to-end neural optimization, symbolic reasoning may perform worse in the presence of noise or

ambiguity due to its brittleness. By preserving transparency and increasing efficacy, hybrid models that

combine learned policies and symbolic logic may be able to close this gap.

5.4 Complexity of Prompt Graph Search

For the purpose of exploration and optimization, the framework keeps track of a mutation graph of prompt

variants. The traversal process becomes computationally costly as the number of nodes grows

exponentially with prompt complexity. To keep search complexity under control, strategies like

reinforcement learning-guided traversal, heuristic sampling, and graph pruning are required.

5.5 Limited Cross-Task Domain Generalization

In RECAP, rules and optimizations are frequently adjusted to suit particular prompt families. As a result,

performance may suffer when used for diverse tasks like code generation, reasoning, or summarization.

By using meta-learning techniques, the system may be able to pick up transferable prompting patterns,

increasing its cross-domain resilience.

5.6 A steep learning curve for the user interface

Despite having a strong reflexive debugging user interface, RECAP can be too complex for non-technical

users. This restricts accessibility for larger audiences in business, educational, or informal contexts. To

facilitate adoption and onboarding, future iterations should include presets, conversational interfaces, and

guided modes.

5.7 Memory Synchronization Across Modules

For scoring, search, and rule tracking, RECAP keeps a shared memory architecture among its

asynchronous modules. There are many technical obstacles in ensuring consistency and low-latency access

across this memory bus. In high-concurrency settings, problems like race conditions, stale reads, and

ineffective caching can occur. These difficulties could be lessened by implementing stream-based update

mechanisms or distributed memory strategies.

Conclusion

The prompt engineering lifecycle is radically changed by RECAP. Prompt design is transformed from an

opaque art into a high-performance, explainable, and principled engineering discipline by fusing neuro-

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250452779 Volume 7, Issue 4, July-August 2025 10

symbolic techniques, multi-objective optimization, evolutionary strategies, and interactive tooling. Our

framework minimizes computational load, steers clear of the dangers of relying too much on LLM

inference, and guarantees that prompts are consistent and interpretable across tasks and domains From

enterprise AI tools to real-time conversational agents and mission-critical decision systems, RECAP's

unified approach makes it the perfect choice for scalable deployment in settings where accuracy,

efficiency, and accountability must coexist.

References

1. S. Liu, X. L. Li, Q. Xie, and V. Srikumar, “Maps of Failure in Prompt Space: Understanding and

2. Overcoming Prompt Failures in Language Models,” arXiv preprint arXiv:2205.12443, 2022.

3. Khattab, X. Wang, M. Xu, and P. Liang, “DSPy: Programming LLMs using Modular Plans and Self-

Refinement,” arXiv preprint arXiv:2305.14743, 2023.

4. X. Mu, Y. C. Tan, and M. Zhou, “InstructZero: Efficient Instruction Tuning of Language Models with

Zero Annotations,” arXiv preprint arXiv:2304.05805, 2023.

5. B. Liu, P. Shi, and C. Callison-Burch, “Prompting with Proximal Policy Optimization,” arXiv preprint

arXiv:2204.05862, 2022.

6. Y. Zhou, Z. Wang, and M. Li, “PromptAgent: LLM Prompting via Self-Exploring and Self Improving

Agents,” arXiv preprint arXiv:2305.16960, 2023.

7. W. Zhao, Y. Shi, and J. Wang, “EvoPrompt: Prompt Optimization with Evolutionary

Algorithms,” arXiv preprint arXiv:2305.16207, 2023.

8. 7. Y. Wang, Y. Feng, J. Zhang, and Z. Wang, “AdaPrompt: Adaptive Prompt-based Finetuning for

Few-shot Learning,” Findings of the Association for Computational Linguistics: ACL 2022, pp.

2375–2386, 2022.

9. T. Goyal, E. Jang, and G. Durrett, “LM-Critic: Language Models for Critiquing Language Model

Outputs,” arXiv preprint arXiv:2304.05692, 2023.

10. S. Liu, J. H. Lee, Y. Wang, and W. Y. Wang, “PEZ: Prompting with Example-Guided Zero-Shot

Learner,” arXiv preprint arXiv:2305.14977, 2023.

https://www.ijfmr.com/

