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Abstract 

Maximizing the effectiveness of Large Language Models (LLMs) requires prompt optimization, but 

existing approaches frequently have limited interpretability, high computational cost, and narrow 

generalization. We introduce RECAP, a modular, cognitively based framework for explainable and 

automated prompt engineering. Neurofeedback-based self-scoring, evolutionary prompt graph search, 

contrastive-symbolic rule induction, Pareto-based cost-accuracy optimization, an interactive debugging 

interface, and a shared inter-module memory layer are the six main innovations it presents. Without the 

need for model fine-tuning, RECAP lowers token, latency, and memory overhead while increasing prompt 

quality and LLM accuracy. It offers a scalable and interpretable substitute for conventional tuning 

pipelines and can be used in a variety of fields, including conversational AI and search. 
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Introduction 

Large Language Models (LLMs) like GPT-4, Claude, and PaLM have brought in a new era in natural 

language processing. They show impressive abilities across various tasks such as answering questions, 

summarizing information, generating code, and logical reasoning. However, these models are very 

sensitive to how input prompts are phrased, structured, and presented. Even small changes in the wording 

of a prompt can lead to big changes in model performance. This can affect the accuracy, coherence, and 

truthfulness of the outputs. This sensitivity has led to the rise of prompt engineering, which focuses on 

creating and improving inputs to guide LLMs toward better responses. 

Currently, prompt engineering is mostly done manually. It relies on guesswork and is hard to systematize. 

Most methods depend on trial-and-error adjustments or informal best practices. This makes them labor-

intensive and not very suitable for scaling in real-world situations. Furthermore, existing automated 

techniques tend to have three main drawbacks: (1) they are not easy to understand, acting as black-box 

optimizers with no clarity on why a prompt works; (2) they bring heavy computational costs, often needing 

repeated access to expensive LLM APIs; and (3) they use simple or fragile optimization tricks, which do 

not work well across different areas and types of prompts. These issues are particularly troublesome in 
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environments that require high throughput and low latency, where computational efficiency and decision 

traceability are critical. 

To tackle these problems, we present RECAP-Reinforced, Explainable, and Cost-Aware Prompting 

, a new framework for automated, interpretable, and resource-conscious prompt optimization. Unlike 

existing systems that view prompt engineering as a static issue, RECAP sees it as a dynamic, modular 

process grounded in cognitive principles. The framework is based on six closely connected innovations: 

• Neurofeedback-driven self-scoring, which allows for self-evaluation of model outputs using clear 

criteria and understandable reasons for failures. 

• Contrastive-symbolic rule induction, which learns human-understandable prompt insights by 

comparing successful and unsuccessful prompts with a mix of neural and symbolic techniques. 

• Evolutionary graph-based prompt decoding, which treats prompt improvement as an intelligent 

exploration of a structured design space using reinforcement learning and neuroevolution. 

• Pareto-optimal token-aware optimization, which balances performance with speed, memory use, and 

token consumption through multi-objective searching. 

• Reflexive debugging interface, a visual dashboard that lets users examine, compare, and modify the 

prompt development process. 

• Inter-module shared memory layer, which allows for shared context across modules, improving joint 

reasoning and cutting down on repetition. 

By combining symbolic reasoning, neural optimization, and interactive visualization, RECAP goes 

beyond traditional prompt engineering methods. It provides a clear, efficient, and scalable solution that 

works across different task areas. This approach removes the need for costly model fine-tuning and makes 

high-quality LLM prompting easier for businesses, research, and important decision-making scenarios. 

In this paper, we explain the design and operational flow of RECAP. We also present empirical evaluations 

across several LLM tasks and assess its performance regarding accuracy, interpretability, and 

computational efficiency. Our findings show that RECAP consistently creates better prompts compared 

to baseline methods, leading to impactful LLM outputs while lowering costs and increasing transparency.. 

 

1. Related Works and comparative analysis 

Many frameworks have emerged to tackle the challenges of prompt optimization for Large Language 

Models (LLMs). Each has its own design philosophy and trade-offs. In this section, we evaluate current 

solutions based on the features of RECAP, focusing on four main areas: interpretability, efficiency, 

adaptability, and usability. 

MAPS [1] is one of the earlier frameworks. It groups failure cases by using edit-distance heuristics. While 

it effectively identifies surface-level prompt problems, MAPS lacks depth in its understanding and is tied 

to fixed prompt structures, which limits its adaptability across tasks. In contrast, RECAP uses semantic 

rule induction and dynamic graph-based traversal. This approach allows for a deeper understanding and 

generalization across various failure contexts. 

PHASEEVO [2] and AutoPDL [3] rely on heuristic rewriting and static rule generation. Although they 

are light in terms of computation, they suffer from fragile logic and limited interpretability when dealing 

with complex and ambiguous tasks. RECAP fixes these issues through a feedback mechanism that learns 

from runtime failures and supports evolving rules. 

DSPy [4] presents a domain-specific language (DSL) for modular prompt composition. However, it does 

not provide clear error diagnosis or runtime introspection. In comparison, RECAP offers explainable error 
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tracing, cognitive failure visualization, and a human-in-the-loop debugging interface, allowing thorough 

user intervention. 

MIPROv2 [5], which focuses on optimizing frozen models, along with reinforcement-learning systems 

like InstructZero [6], PPO-Prompt [7], and PromptAgent [8], show notable performance improvements. 

Yet, they often lack transparency, incur high computational costs, and are less suitable for limited 

environments. RECAP tackles these challenges by using a Pareto-front optimizer to balance accuracy, 

latency, and resource use. 

EvoPrompt [9] and AdaPrompt [10] provide adaptability through evolutionary search and control-token 

strategies. While EvoPrompt shares a mutation-based refinement approach with RECAP, it does not 

include self-scoring, symbolic rule learning, or inter-module memory-key features that ensure coherent 

and traceable prompt paths as seen in RECAP. 

Recent initiatives like LM-Critic [11] and PEZ [12] focus on aligning outputs with human preferences or 

using embedding-guided prompting. While these methods are useful for zero-shot generalization, they do 

not offer structured error reasoning, rule induction, or interactive debugging—essential components 

present in RECAP. 

In conclusion, most existing frameworks tend to favor either performance or efficiency, often sacrificing 

interpretability and adaptability. RECAP stands out by bringing together semantic reasoning, dynamic 

optimization, and human-in-the-loop transparency. This integrated design allows for strong, flexible, and 

cognitively aligned prompt engineering, pushing the boundaries of LLM usability in practical situations. 

 

2. Our Approach and Solution proposed 

RECAP is a flexible and understandable framework that sees prompt optimization as a structured 

workflow instead of a hidden tuning process. It features a pipeline made up of six closely connected 

modules. Each module tackles a key challenge in prompt engineering, covering evaluation, rule discovery, 

exploration, optimization, and interactive refinement. Our solution is designed to work with various 

models, be efficient, and apply to different NLP tasks. 

Below, we outline the main components of RECAP: 

2.1. Neurofeedback-Driven Self-Scoring   

Traditional methods for evaluating prompts often depend on outside metrics or human feedback. RECAP 

uses a self-scoring module inspired by neurofeedback. This allows the LLM to evaluate the quality of its 

own outputs. The module captures confidence signals from the model's token distribution, measures 

entropy, and analyzes coherence patterns to assign utility scores without needing additional external tools. 

These self-assessments act as key signals for optimization, greatly reducing the need for repeated hidden 

executions. 

2.2. Contrastive-Symbolic Rule Induction   

At the core of RECAP is a prompt pattern discovery engine that combines symbolic reasoning with 

contrastive learning. By examining successful and unsuccessful prompt-response pairs, this module 

creates general, human-readable rules—like syntactic structures, lexical hints, and patterns—that show 

the difference between effective prompts and ineffective ones. This approach provides clear insights into 

what makes a prompt successful and enhances explainability in automated prompt creation. 

2.3. Evolutionary Prompt Graph Decoder   

Instead of relying on fixed templates or greedy sampling, RECAP uses an evolutionary prompt graph 

decoding algorithm which views the prompt space as a dynamic graph. Each node represents a prompt 
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variant, and the edges show syntactic or semantic changes driven by learned mutation operators. Through 

simulated evolution—including crossover, mutation, and selection based on fitness—the system 

efficiently explores a wide range of strong prompt variants compared to brute-force or gradient-free 

approaches. 

2.4. Pareto-Front Cost-Aware Optimization   

Understanding that prompt quality involves multiple dimensions, RECAP includes a Pareto-front 

optimizer that balances competing goals like response accuracy, speed, token cost, and memory use. 

Instead of focusing on a single loss, the system looks for a range of solutions that offer the best trade-offs, 

allowing users to choose prompts that fit best for real-time systems, embedded use, or high-volume 

inference settings. This changes prompt optimization into a decision-making process that considers both 

resources and task needs. 

2.5. Reflexive Debugging and Steering Interface   

To support human oversight and intervention, RECAP provides a reflexive debugging interface. This is 

an interactive space where developers can examine prompt-response paths, review induced rules, track 

decisions, and intervene as needed. This feature changes prompt engineering from a trial-and-error process 

into a guided, collaborative, and trackable experience. It's particularly useful for sensitive areas like 

healthcare, law, or finance. 

2.6. Inter-Module Shared Memory Layer   

The whole RECAP pipeline relies on a shared inter-module memory layer. This knowledge bus lets each 

component share intermediate artifacts, feedback signals, and change histories. This setup promotes 

consistent context sharing, supports ongoing learning, and enables reasoning across modules, ensuring 

every part of the pipeline benefits from the system's combined knowledge. 

 

1. Design of proposed solution 

 
Component Diagram 
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Use case diagram 

 

 
Sequence diagram 

 

 
Deployment diagram 
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4. RECAP Architecture 

This section highlights key improvements in RECAP, a new system for optimizing prompt engineering 

using clear, modular, and grounded methods.   

4.1. Runtime-Aware Feedback Module, Neurofeedback with Self-Scoring   

Limitations in prior systems: Existing prompt optimization frameworks usually depend on static failure 

modes like edit distance, token mismatch, or general error types, which offer little insight into the causes 

of failure.   

RECAP enhancements:   

• Includes trace and explanation graphs to track failure patterns and identify causes in prompt-response 

sequences.   

• Uses LLM-generated rationales (e.g., GPT-4o) for introspective explanations of task failures.   

• Introduces self-scoring mechanisms, where the model assesses its own output against reference 

answers using rubric-based comparisons.   

• Enables tracking of prompt trajectories, allowing for long-term analysis of how changes in prompts 

affect model behavior over multiple runs.   

This shift from simple logging to tracing cognitive failures creates valuable feedback loops for improving 

prompts.   

4.2. Semantic Rule Induction, Contrastive + Symbolic Hybrid Learning   

Limitations in prior systems: Traditional clustering methods rely on superficial token overlaps or edit-

distance rules, resulting in weak and unclear patterns.   

RECAP enhancements:   

• Uses contrastive learning between failure and success prompt pairs to draw meaningful decision 

boundaries.   

• Integrates symbolic grammar induction to create human-readable rules, like logical constraints and 

quantifier-based heuristics.   

• Supports rules such as: "If failures cluster around negation-based prompts, use zero-shot analogical 

framing."   

This method connects neural representations with symbolic reasoning, allowing for understandable 

generalizations across prompt types.   

4.3. Dynamic Prompt Generator, Evolutionary Graph Decoder   

Limitations in prior systems: Prompt searches are often limited to basic token-level edits or linear changes, 

failing to fully explore the design space.   

RECAP enhancements:   

• Builds a Prompt Graph, where nodes represent prompt variations and edges denote specific mutation 

methods (e.g., adding examples, changing styles).   

• Uses neuroevolutionary search and reinforcement learning (RL) to explore this graph adaptively.   

• Optimizes traversal techniques to prioritize error correction, diversity improvement, and token 

efficiency.   

• This approach turns prompt engineering into a structured exploration challenge, enabling smart, 

history-informed refinement.   

4.4. Token-Aware Optimizer, Cost-Conscious Pareto Front Search   

Limitations in prior systems: Prompt optimization often ignores resource constraints, focusing only on 

accuracy metrics.   
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RECAP enhancements:   

• Employs multi-objective optimization using Pareto front analysis across various dimensions, such as 

accuracy, latency, memory usage, and token cost.   

• Creates a reward function that balances performance with computational efficiency.   

• Automatically filters out less efficient prompts that trade high costs for slight accuracy gains.   

• This ensures cost-aware optimization, leading to prompts that perform well while being resource-

efficient.   

4.5. Human-in-the-Loop Layer, Reflexive Debugging Interface   

Limitations in prior systems: Most systems provide limited interactivity, usually only offering 

configuration files or basic APIs.   

RECAP enhancements:   

Features a visual, interactive UI (built in React) that shows:   

• Prompt mutation histories   

• Applied rules and their effects   

• Interactive comparisons between prompt versions   

• Offers failure drilldowns, revealing error reasons and response differences.   

• Supports user involvement, such as locking specific modules, adding counterfactuals, or setting 

constraints.   

This allows for reflexive debugging, enabling users to examine, understand, and guide the evolution of 

prompts with detailed control.   

4.6. Inter-Module Memory Layer (New), Shared State Communication Bus   

Limitations in prior systems: Prompt modules work in isolation, resulting in disconnected or redundant 

feedback.   

RECAP enhancements:   

• Implements a shared memory layer (e.g., using vector databases or token state caches) that retains 

intermediate states, prompt results, and rule applications.   

• Allows all modules to read from and write to this shared context, promoting better integration 

throughout the pipeline.   

• Enables scenarios where the rule induction module adjusts based on failure patterns seen by the 

dynamic prompt generator. 
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Workflow Diagram 

 

 
Architecture Diagram 
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5. Limitations of RECAP 

Even with RECAP's advantages in adaptive prompt optimization, there are still a number of drawbacks 

that call for more research and technical improvement. 

5.1 LLM-Based Feedback's Computational Cost 

Large language models (LLMs), like GPT-4, are used by RECAP to produce justifications, explanations, 

and self-scores. Deploying this dependency in real-time or resource-constrained environments is difficult 

due to the substantial computational overhead it introduces. Future research might look into using task-

specific or distilled LLMs to lower inference costs without sacrificing response quality. 

5.2 Reliance on Real-World Information 

Access to trustworthy ground truth outputs is necessary for the framework's feedback mechanisms, such 

as contrastive learning and self-scoring. Feedback signals become noisy and unreliable in domains that 

are unclear or have limited resources, particularly open-ended generation tasks. Enhancing few-shot 

references or adding human-in-the-loop verification can boost training stability and feedback quality. 

5.3 Tradeoff between Interpretability and Performance 

For interpretability, RECAP places a strong emphasis on the induction of symbolic rules. In contrast to 

end-to-end neural optimization, symbolic reasoning may perform worse in the presence of noise or 

ambiguity due to its brittleness. By preserving transparency and increasing efficacy, hybrid models that 

combine learned policies and symbolic logic may be able to close this gap. 

5.4 Complexity of Prompt Graph Search 

For the purpose of exploration and optimization, the framework keeps track of a mutation graph of prompt 

variants. The traversal process becomes computationally costly as the number of nodes grows 

exponentially with prompt complexity. To keep search complexity under control, strategies like 

reinforcement learning-guided traversal, heuristic sampling, and graph pruning are required. 

5.5 Limited Cross-Task Domain Generalization 

In RECAP, rules and optimizations are frequently adjusted to suit particular prompt families. As a result, 

performance may suffer when used for diverse tasks like code generation, reasoning, or summarization. 

By using meta-learning techniques, the system may be able to pick up transferable prompting patterns, 

increasing its cross-domain resilience. 

5.6 A steep learning curve for the user interface 

Despite having a strong reflexive debugging user interface, RECAP can be too complex for non-technical 

users. This restricts accessibility for larger audiences in business, educational, or informal contexts. To 

facilitate adoption and onboarding, future iterations should include presets, conversational interfaces, and 

guided modes. 

5.7 Memory Synchronization Across Modules 

For scoring, search, and rule tracking, RECAP keeps a shared memory architecture among its 

asynchronous modules. There are many technical obstacles in ensuring consistency and low-latency access 

across this memory bus. In high-concurrency settings, problems like race conditions, stale reads, and 

ineffective caching can occur. These difficulties could be lessened by implementing stream-based update 

mechanisms or distributed memory strategies. 

 

Conclusion 

The prompt engineering lifecycle is radically changed by RECAP. Prompt design is transformed from an 

opaque art into a high-performance, explainable, and principled engineering discipline by fusing neuro-
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symbolic techniques, multi-objective optimization, evolutionary strategies, and interactive tooling. Our 

framework minimizes computational load, steers clear of the dangers of relying too much on LLM 

inference, and guarantees that prompts are consistent and interpretable across tasks and domains From 

enterprise AI tools to real-time conversational agents and mission-critical decision systems, RECAP's 

unified approach makes it the perfect choice for scalable deployment in settings where accuracy, 

efficiency, and accountability must coexist. 
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