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Abstract 

Alzheimer's disease is the most prevalent etiology of dementia, and its early diagnosis has been deemed 

instrumental for early intervention and better patient management. Over the last few years, deep learning 

techniques have been used with neuroimaging data, and notable gains in diagnostic performance have 

ensued. Such models have, however, typically been faulted for being "black boxes" that, despite their 

performance, hinder their acceptance in clinical practice due to a lack of transparency and 

interpretability. Current explainability methods have typically been used as post-hoc procedures, but 

they often yield inconsistent or anatomically irrelevant attribution maps that clinicians find hard to trust. 

In this review, progress in explainable AI for the detection of Alzheimer's is discussed, with a focus on 

DL methods combined with multimodal neuroimaging. Emphasis is given to XRAI, a region-based 

attribution method that has been demonstrated to produce more coherent and clinically interpretable 

explanations compared to conventional pixel-level techniques. The application of XRAI to 2D and 3D 

neuroimaging is considered, together with the potential of XRAI to identify anatomically relevant brain 

areas implicated in disease pathology. Challenges in terms of clinical uptake, integration into workflow, 

and standardized evaluation of explainability techniques are also discussed. The review identifies how 

the pairing of high-performing AI models with strong explainability methods has the potential to enable 

the creation of practical and reliable diagnostic tools for real-world clinical application. 

 

Keywords: Alzheimer’s disease, Explainable AI, Neuroimaging, Multimodal MRI, XRAI, Diagnostic 

interpretability. 

 

1. INTRODUCTION 

Alzheimer's disease (AD) is still the global leading dementia with 55 million people affected worldwide, 

and estimates that by the year 2050, the number can double due to aging populations [1,2]. It is an 

irreversible neurodegenerative disorder whereby pathological protein aggregates, such as amyloid 

plaques and neurofibrillary tangles, impair neuronal function and result in irreversible cognitive 

dysfunction, memory loss, and behavioral change [3]. The pathophysiologic characteristics of AD are 

sequestration of extracellular senile plaques made of amyloid-beta (Aβ) peptides and intracellular 

neurofibrillary tangles made of hyperphosphorylated tau proteins, which together initiate 

neuroinflammatory cascades and synaptic dysfunction [2]. 

The condition generally progresses through discrete clinical stages, starting with cognitively normal  
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(CN) aging, followed by mild cognitive impairment (MCI), and then finishing in advanced Alzheimer’s 

disease (AD) dementia. Each stage represents an elevated level of cognitive decrease and functional 

impairment [4]. The transition interval between normal cognitive abilities and Alzheimer's disease, 

known as mild cognitive impairment, represents a very promising target for a therapeutic intervention, 

since 10-15% of MCI-diagnosed individuals are converted to Alzheimer's disease per year, compared to 

1-2% conversion rates among the general aging population [1]. The heterogeneous nature of MCI 

presentations, ranging from amnestic MCI primarily affecting memory to non-amnestic MCI impacting 

other cognitive domains, complicates early diagnostic accuracy and necessitates sophisticated 

assessment approaches [4]. Early signs include subtle memory lapses, particularly episodic memory 

deficits, cognitive difficulties in executive function and language processing, and impaired learning 

abilities that progressively interfere with daily living activities. 

The global burden of AD extends far beyond the patients themselves, profoundly impacting families, 

caregivers, and healthcare systems worldwide [3]. Early and accurate diagnosis is crucial for 

implementing effective intervention strategies, as therapeutic interventions are most beneficial when 

applied during the initial stages of disease progression [5].  

There remains no cure for AD, but early identification makes feasible inclusion in broad treatment 

planning which can possibly delay disease progression and promote quality of life for patients and their 

families as well as enabling forward planning and making family support achievable [6]. The imperative 

role for early identification is again highlighted through the methods for early intervention which can 

possibly delay the emergence of further disabling symptomatology and attain superior patient outcomes 

[3]. 

 

2. Neuroimaging in the Detection of Alzheimer's Disease  

Today, neuroimaging is an anchor technique in the diagnostics and tracking for AD, as the cumulative 

knowledge on disease's fundamental processes of pathophysiology is provided from the various types of 

modalities [2]. The structural magnetic resonance imaging (sMRI) provides most current non-invasive 

instruments for primary structure changes related to assessment for AD in an initial stage, which are 

primarily hippocampal atrophy and cortex thinning, mostly associated with cognitive impairment [7,8].   

Specialized MRI methods have improved the sensitivity and specificity of AD detection over and above 

traditional structural imaging methods. Diffusion tensor imaging (DTI) allows unparalleled observation 

of white matter microstructural integrity through measurement of the directional diffusion of water 

molecules, with the ability to detect microstructural alterations in white matter integrity that can occur 

before overt atrophy is detectable using conventional MRI [1,2]. Functional MRI (fMRI) contributes 

valuable information about neural activity patterns and network connectivity, revealing characteristic 

alterations in brain networks that are consistently observed across AD populations [2]. 

The default mode network, comprising posterior cingulate cortex, precuneus, and medial prefrontal 

regions, shows systematic disruption in AD that manifests as reduced connectivity in posterior brain 

regions and increased connectivity in frontal regions, potentially as a compensatory mechanism [2]. 

Resting-state fMRI can detect functional brain changes that precede structural alterations, with research 

indicating that AD affects functional connectivity within the default mode network. However, fMRI 

application in clinical settings is limited due to variability in the BOLD response and challenges in 

longitudinal studies [2]. 

Positron emission tomography (PET) imaging has revolutionized the diagnostic strategy for Alzheimer's  
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disease (AD) by allowing the direct visualization of molecular pathological processes underlying this 

disorder. Fluorodeoxyglucose (FDG)-PET measures cerebral glucose consumption, showing 

characteristic patterns that consistently distinguish between AD patients and healthy controls, and are 

useful for further classification into different disease stages. The use of FDG-PET for diagnosing AD 

has become widely accepted, showing unmatched sensitivity and specificity to predict at-risk status for 

developing AD, and recognizing preclinical ATP-III-defined impairments in glucose metabolism. In a 

more recent development, amyloid-PET imaging with tracers like florbetapir has made it possible to 

visualize amyloid plaque deposition across the brain and observe directly both the spatial pattern and 

temporal course of AD pathology [2]. 

Tau-PET imaging represents the newest advance in molecular neuroimaging, with tracers such as [18F] 

flortaucipir showing the potential to image neurofibrinary tangle distribution in vivo in patients. Tau 

PET imaging has also revealed potential for the detection of AD and the differentiation from other 

neurodegenerative conditions, with studies showing a strong correlation between tau accumulation and 

cognitive decline [2]. Tau PET imaging research has enabled tau tangles in the brain, one of the 

hallmark features of AD pathology, to be imaged, with visual tau PET scan interpretation based on 

regional uptake scoring systems to ascertain tau deposition. 

The integration of different neuroimaging modalities by multimodal analysis techniques has consistently 

demonstrated superior diagnostic performance compared with single-modality techniques. Hybrid 

approaches of PET with other imaging modalities, i.e., MRI, can be utilized for improving diagnostic 

accuracy as well as obtaining a fuller view of AD pathology [2]. Multimodal image fusion approaches 

can integrate structural and metabolic information from MRI and PET imaging for improved diagnosis 

and monitoring of AD. Sophisticated data fusion techniques enable optimal combination of 

complementary information from different imaging modalities, utilizing the specific strengths of each 

technique to provide overall assessment of brain structure, function, and molecular pathology [1]. 

 

3. Machine Learning and Deep Learning Approaches in AD Detection  

The application of artificial intelligence in AD detection has seen phenomenal expansion, transitioning 

from traditional ML approaches to sophisticated deep learning frameworks that have transformed 

automatic neuroimaging analysis. Early studies were mainly based on traditional ML techniques such as 

Support Vector Machines (SVM), Random Forest (RF) and logistic regression, which were effective in 

classifying AD stages through hand-crafted features of neuroimaging data [4,6]. These methods reported 

modest accuracies but were inherently limited by the requirement of hand-crafted features and domain 

knowledge for feature selection, and required long preprocessing chains, which limited their scalability 

and reproducibility in various clinical settings. 

Conventional ML techniques have been extensively applied in AD classification, with SVM being a 

popular option for binary classification problems such as AD classification from MRI images. SVM 

operates by identifying the hyperplane that maximally differentiates two classes of data in a high-

dimensional space and is most effective when the feature space is distinct and well established. Random 

Forest, an ensemble learning technique that integrates numerous decision trees, has been utilized to 

enhance classification performance and strength, with research showing its applicability in AD detection 

using feature extraction and classification [3]. However, these traditional techniques rely heavily on 

hand-designed features, which can be time-consuming and domain-specific, and feature selection plays 

an important role in model performance. 
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The paradigm shift towards deep learning has transformed AD detection by allowing automatic feature 

extraction from high-dimensional neuroimaging data through hierarchical representation learning. 

Convolutional Neural Networks (CNNs) have emerged as the de facto architecture for medical image 

analysis, achieving better performance in distinguishing between healthy brains, MCI and AD-affected 

brains through end-to-end learning [8]. Studies have reported that CNNs can outperform traditional ML 

methods in AD stage classification through high-level abstract feature extraction from MRI data, and 

CNN models such as VGGNet and ResNet have recorded impressive performance in discriminating 

between healthy brains, MCI and AD-affected brains [3]. 

There is a higher propensity to develop high-level CNN architectures for medical image applications, 

and transfer learning methods have made for successful adaptation of pre-trained networks for the 

assessment of neuroimaging. Transfer learning, for example, fine-tuning pre-trained CNN architectures 

on AD databases, was successful in enhancing diagnostic performance as well as diminishing the 

necessity for high-annotated databases. MRI-based brain data studies offered an indication that CNNs 

are capable of achieving high accuracy levels. For instance, MobileNetV3 was capable of 93% accuracy 

in AD classification, and DenseNet121 was capable of achieving 88% accuracy [3]. 

Recently developed higher-level architectures further enhance the automatic AD detection current-state-

of-art performance. 3D Hybrid Compact Convolutional Transformers (HCCTs) is an emerging method 

that simultaneously integrate the local feature extraction advantage for CNNs and long-range 

dependency modeling for vision transformers to effectively extract both local anatomical knowledge and 

global spatial associations for 3D MRI volumes [5]. The hybrid models are compact in their 

computations due to their compact architecture but attain higher performance in comparison to 

traditional CNN-based methods, achieving an accuracy value of 96.06% for multi-class classification. 

The process of using the self-attention technique makes the model pay attention to desired areas in the 

brain in a selective manner to remove unwanted information, resulting in stricter feature representation. 

The deep architecture's expansion for neural networks to medical imaging is an excellent new promise 

for detection for AD. The neural network's architecture, YOLOv11, exhibits clear sufficiency for 

localization as well as for classification in parallel on 93.6% sensitiveness, 91.6% recall, and 96.7% 

mAP50 in multimodal fusion techniques combining T2-weighted MRI as well as DTI pictures for 

concurrently estimating structural as well as microstructural change in the brain [1]. The joint detection 

as well as localization techniques allow automatic localization detection for areas in the brain for AD 

pathology but still permits classification in high accuracy for severities for disease. 

Ensemble methods also increased accuracy in diagnosis-making through combining various models to 

capitalize on their complementarities as well as decrease individual model biases. Outputs in various 

models can be aggregated together using ensemble methods for an improvement in the generalizability 

in the learning model, e.g., averaging, stacking, or boosting [3]. Ensemble methods are also said to offer 

increased accuracy in diagnostics compared to in individual models because they pool the individual 

bias as well as the predictor variances [4]. CNNs, specifically, are said to offer increased performance in 

the majority of medical image understanding applications, e.g., AD diagnosis, because they can 

capitalize on non-linear as well as hierarchical features. 

Systematic reviews and meta-analysis on applications of ML in the diagnosis for AD also suggested the 

implementation of numerous methods on different datasets and methodological frameworks. The meta-

analysis and systematic review on AD prevalence on different stages after the implementation of ML 

methods suggested the predominance in prevailing prevalence which varied considerably between 
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studies. With consideration on the prevailing rate between the AD and the cognitively normal, the 

estimate was 49.28% between studies, but for three-stages cognitive impairment, the estimate was 

29.75%. Different participants in different studies estimated four-stages and suggested an overall total 

prevalence as 13.13%, but participants-based studies estimated six-stages prevalence as 23.75% [6]. The 

findings suggest the change in the implementation of the diagnosis on different methodological 

frameworks and suggest the requirement for consistent assessment processes. 

Table 1 provides a comparative overview of prominent AI models that have been applied to Alzheimer’s 

disease detection using neuroimaging data. Conventional CNNs, such as VGGNet and ResNet, remain 

widely used for 2D MRI analysis because of their ability to extract hierarchical image features. These 

models can achieve high accuracy but are limited by their need for large training datasets and their lack 

of interpretability. YOLOv11, an advanced object detection framework, has been adapted for 

multimodal inputs such as MRI and DTI, enabling simultaneous localization and classification of 

disease-related brain regions with strong diagnostic performance, although at a higher computational 

cost. The 3D Hybrid Compact Convolutional Transformer (3D HCCT) combines the strengths of CNNs 

and Transformers to capture both local anatomical features and global spatial dependencies in 3D MRI 

data, achieving the highest reported accuracy. Despite these advances, the table illustrates that trade-offs 

remain between performance, computational requirements, and clinical interpretability. 

 

Table 1. Comparison of AI Models for AD Detection 

Model /  

Architecture 

Data 

Type 
Modality 

Accuracy 

(%) 
Advantages Limitations 

CNN 

(VGGNet) 
MRI 2D 85 

High accuracy, easy 

training 
Low interpretability 

ResNet MRI 2D 88 Deep feature extraction Require large datasets 

YOLOv11 MRI+DTI Multimodal 93.6 
Simultaneous localiza-

tion and classification 

High computational 

cost 

3D HCCT MRI 3D 96.1 

Combines CNN and 

Transformer ad-

vantages 

Complex model, high 

data requirements 

 

4. Explainability in Artificial Intelligence Models for Medical Applications 

Following advancements in AD detection accuracy for existing AI systems, high-level architecture's 

intrinsic “black box” nature, which makes decision-making processes non-transparent and inhibits 

clinical confidence, is the high-level bottleneck against clinical deployability in such systems. Non-

transparency and interpretability of AI decision-making processes are root causes for clinical non-

acceptability, most notably in high-risk clinical applications where knowledge about rationale behind 

recommended diagnoses is an integral part in patient safety, regulatory approvals, and ethical medical 

practice [3,9]. Clinicians require further knowledge about AI systems arriving at their diagnostic outputs 

to interpret recommendations based on clinical expertise as well as offer professional accountability in 

clinical decisions for patient care. 

Later, Explainable AI (XAI) was developed as a preferred remedy for closing AI performance-clinical 

interpretability gaps. XAI gives human interpretable explanations for AI-based decisions in an endeavor 

to offer transparency, instill confidence, and enhance AI tool uptake in clinical use [2]. XAI is an 
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ensemble of methods and technologies making AI model behavior and decision-making processes 

understandable and interpretable to humans in an endeavor to primarily inform end-users on how an AI 

model makes a made decision or prediction [3]. This is critical in clinical contexts where interpretability, 

accountability, as well as trust-building in the decision-making process is of paramount importance. XAI 

methods operate alongside a variety of methodological strategies that fall under post-hoc methods; 

supplying explanations after the models have been deployed, and ad-hoc methods, which entail 

including explainability mechanisms as integral elements in the model building process. 

 

4.1 Post-hoc Explainability Methods 

The most preferred XAI methods in existing medical applications of AI are post-hoc methods due to 

their model-agnostic nature, as they can be directly applied on all configurations in deep learning. The 

majority of DL algorithms use post-hoc methods because they are easiest to apply and can be plugged in 

under plug-and-play setup [9]. Post-hoc explainability is founded on gradient-based methods using 

mathematical properties of optimization in NNs in an effort to determine input features most 

contributively attributing to prediction outputs. 

Gradient-Weighted Class Activation Mapping (Grad-CAM) is an instance that utilizes gradient info 

propagated through convolutional layers for identifying spatial regions in input pictures most responsible 

for model outputs [8,9]. Grad-CAM was extensively adopted in AD detection studies and provided 

visualization-based explanations indicating brain regions important for classification outputs. Most 

studies indicated that Grad-CAM can indicate image regions most responsible for model outputs 

according to gradient info propagated in the final convolutional layer, but the technique is not effective 

because spatial resolution is not high, and background regions unrelated to object features are typically 

emphasized [2]. 

SHAP (SHapley Additive exPlanations) is a sophisticated technique that provides a quantitative value 

for each input component for the model's outputs based on game theory reasoning under the cooperative 

game theory [2]. 

SHAP is an XAI method that gained significant attention in generating model-agnostic explanation as an 

explanation for each prediction in terms of variation in various features, based on Shapley values in 

game theory for estimating the extent to which each feature is accountable for the model prediction [3]. 

SHAP, when adapted in AD detection problems, was highly informative in revealing important brain 

regions and demographically associated factors causing diagnostic decisions, even when explanation is 

poor, in some way, intuitive understanding for immediate clinical translation. 

Local Interpretable Model-Agnostic Explanations (LIME) generates an explanation for a sample by 

discovering an interpretable model in the local region surrounding the prediction through simple 

surrogate models, which are interpretable in nature [3]. LIME generates individual predictions by locally 

approximating the AI model around the particular instance being predicted, determining which features 

had the greatest influence on the choice by varying input data and examining changes in the model's 

output. While LIME offers valuable insights into individual classification decisions, studies have noted 

limitations in its ability to capture the full complexity of deep learning models, particularly when applied 

to high-dimensional medical imaging data. 

Layer-wise Relevance Propagation (LRP) operates through a fundamentally different mechanism by 

backpropagating relevance scores from model outputs to inputs layer by layer, ensuring conservation of 

prediction scores throughout the network architecture [2]. LRP works by propagating the class score 
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backward over the neural layers to the input image using LRP specific rules, with the concept of LRP 

being to conserve inter-neuron dependency. In AD detection applications, LRP has shown promise in 

generating pixel-level attribution maps that highlight anatomically relevant brain regions while avoiding 

some of the gradient saturation issues that plague simpler gradient-based methods. 

Table 2 summarizes widely used explainable artificial intelligence (XAI) methods that have been 

applied to neuroimaging-based Alzheimer’s disease detection. Grad-CAM is a gradient-based post-hoc 

technique that generates visual heatmaps to highlight brain regions contributing to a model’s prediction. 

Although widely adopted, it provides low spatial resolution and may emphasize irrelevant background 

areas. LIME is another post-hoc approach that builds locally interpretable surrogate models around 

individual predictions, offering valuable case-specific insights but struggling with high-dimensional 

medical imaging data. SHAP, based on game-theoretic Shapley values, assigns numerical importance 

scores to input features, making it useful for quantifying the contribution of specific regions or 

demographic factors to model decisions, albeit with high computational cost. XRAI is a more recent 

region-based attribution method that overcomes the limitations of pixel-level explanations by producing 

coherent and anatomically meaningful attribution maps. While its application in Alzheimer’s detection is 

still limited, XRAI shows strong potential for improving clinical interpretability by reliably highlighting 

disease-relevant brain regions. 

 

Table 2. Comparison of XAI Methods in AD Applications 

Method Type Advantages Limitations Using AD Applications 

Grad-CAM Post-hoc 
Provides visual  

explanation 

Low spatial  

resolution 

Highlights brain regions 

on MRI 

LIME Post-hoc 
Generates local  

explanations 

Limited in high-

dimensional data 

Explains decision for  

single cases 

SHAP Post-hoc 
Gives numerical  

feature contributions 

High computational 

cost 

Shows clinically relevant 

factors 

XRAI Regional 
Consistent and ana-

tomically meaningful 

Novel, limited  

applications 

Highlights pathological 

brain regions 

 

4.2 Sophisticated Regional Attribution Techniques 

XRAI (eXplanation via Regional Attributes Integration) is a considerable improvement over pixel-level 

attribution techniques by overcoming intrinsic limitations in coherence, stability, and clinical relevance 

that typify previous explainability techniques [10]. Unlike conventional techniques that generate 

granular pixel-level explanations in the form of often noisy and fragmented attribution maps, XRAI 

adopts a new region-based methodology that over-segments images into coherent anatomical regions 

and recursively evaluates their importance based on integrated gradient attribution scores. This 

methodological innovation addresses the crucial observation that while pixel-level attributions are 

unreliable due to gradient saturation and optimization artifacts, region-level aggregations of such scores 

provide more stable and clinically relevant explanations. 

The XRAI technical implementation adheres to a three-step algorithmic pipeline that begins with wide 

image segmentation with multiple over-segmentations with different parameters to acquire diverse 

region proposals. Segmentation is performed by Felzenswalb's graph-based method itself with a scale 

parameter ranging from 50 to 1200, giving overlapping region hierarchies with filtering of segments 
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smaller than 20 pixels and dilation of segment masks by 5 pixels to align segment boundaries with 

image boundaries [10]. The attribution calculation is then performed using black and white baselines 

with the integrated gradients algorithm to achieve balanced invariance for dark and light image features, 

respectively, while also avoiding the well-known limitations of single-baseline approaches. 

The most novel aspect in XRAI is the step for region selection, which is done in an iterative process. 

The step gives a step-by-step algorithm incrementally initializing an empty reference mask 

incrementally adding incrementally, after each previous, regions in an effort to optimize maximum total 

reference gain in unit area. The step, in each step, gives ever-inclusive rationales, inclusive of 

informative pathological markers together with subsidiary support evidence, and selects regions based 

on their salience [10]. The mathematical grounding is on the expression in which each region's XRAI 

attribution score is given as summation integral gradient values for each of all the pixels in each region, 

thereafter, generating higher attribution scores that are associated with anatomically significant brain 

structures. 

Comparative assessment under new criteria such as Accuracy Information Curves (AIC) and Softmax 

Information Curves (SIC) confirmed that XRAI is the top against all baseline attribution methods under 

most criteria [10,11]. The criteria are systematic perturbation experiments-based and assess, according to 

accuracy, which methods are the top in identifying the most important regions in prediction in models. 

Experiments confirmed that XRAI is the top in accuracy against all the other baseline saliency methods. 

The experiments, on an unprecedentedly colossal scale, confirmed that it is the top in localization 

accuracy as well as consistency in explanation, significantly in medical imaging applications where 

identification of region in pathology accurately is most important. 

4.3 Challenges and Limitations in Current XAI Approaches 

Despite huge advancements in XAI methodology, several inherent limitations still hamper the clinical 

utility and deployment readiness of current explainability techniques for medical imaging applications. 

Arguably the most critical limitation is low specificity, with many XAI methods producing explanations 

that highlight anatomically irrelevant regions or background artifacts lacking clinical significance [9]. 

Post-hoc XAI lacks the ability to produce class-discriminative and target-specific explanation, while 

generally, post-hoc XAI methods are confronted with complexity in producing understandable and class 

discriminative attribution maps. 

Another significant barrier to clinical translation is the absence of standard evaluation metrics for XAI 

quality assessment, as most evaluations rely on subjective visual inspection rather than quantitative 

measurements enabling objective comparison of different explainability methods [9]. Quality control of 

the XAI approaches is not typically performed, and systematic comparison among approaches is thus 

challenging. Technical validation and clinical validation gaps are other major obstacles to XAI adoption 

in clinical environments, since studies have stressed the utmost need for validation frameworks 

measuring not just technical performance but also clinical usefulness and workflow integration [2].  

The sophistication of contemporary deep learning structures also adds to the complexity of 

explainability, as the task of giving intelligible interpretations gets more difficult with the rise in model 

complexity. Current practice demonstrates minimal deployment of deep learning algorithms in clinical 

practice due to the fact that DL algorithms are not transparent and trustworthy since they have an 

underlying black-box mechanism [9]. To ensure successful utilization, explainable artificial intelligence 

may be implemented to bridge the gap between medical practitioners and DL algorithms, yet no clear 

agreement is present regarding how XAI needs to be implemented to bridge the gap between medical  
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practitioners and DL algorithms for clinical adoption. 

 

5. Results 

Despite impressive gains in AI-driven AD detection reporting high accuracies in research environments, 

the clinical uptake of such systems is drastically low because of inherent impediments in interpretability, 

usability, and clinical integration. Existing AI systems are "black boxes" that yield diagnostic 

predictions without clinically useful explanations to enable healthcare practitioners to comprehend and 

verify machine logic underlying algorithmic decisions [3,9]. This lack of transparency poses 

considerable impediments to clinical adoption, especially among general practitioners and non-experts 

who need intuitive explanations to make informed diagnostic decisions in time-pressed clinical practice. 

Current explainability approaches, although technically advanced, typically do not achieve the degree of 

clinical interpretability necessary for deployment in the real world. Classical gradient-based approaches 

commonly identify anatomically irrelevant areas or generate inconsistent explanations that lack clinical 

validation and can confuse rather than inform clinical decision-making. Furthermore, these approaches 

usually function independently of clinical workflow, necessitating separate analysis pipelines that are 

not practical for everyday clinical use where integrated decision-making support is necessary. There is 

no obvious agreement as to how XAI should be implemented to bridge the gap between medical 

practitioners and DL algorithms for clinical deployment, with systematic technical and clinical quality 

evaluation of XAI approaches seldom being implemented [9]. 

There is a key gap between research-driven AI systems and clinically deployable products that can be 

easily integrated into clinical workflows without the need for specialized technical experience. Existing 

systems generally require a high level of technical expertise for their operation and interpretation, 

reducing their usability by the wider healthcare community where general practitioners are key users in 

clinical screening applications. The lack of extensive bias detection and monitoring features is another 

key limitation since demographic-related prediction biases can cause systematic misdiagnosis, resulting 

in considerable clinical risks precluding safe deployment. The integration of multiple neuroimaging 

modalities for comprehensive AD assessment has shown superior diagnostic performance compared to 

single-modality approaches, yet current explainability frameworks are predominantly designed for 

single-modality analysis and lack the capability to provide unified explanations across different imaging 

types [1]. XRAI's region-based approach offers promising solutions to traditional pixel-level attribution 

limitations, demonstrating superior performance in localizing pathologically relevant regions compared 

to conventional methods, but its application to AD detection using neuroimaging data remains largely 

unexplored, particularly in the context of comprehensive clinical deployment systems. 

This research addresses these critical gaps by developing a comprehensive, clinically oriented 

explainable AI system that integrates advanced deep learning architectures with XRAI-based 

explainability for both 2D and 3D neuroimaging analysis through a unified web-based clinical 

deployment platform. The innovation lies in creating the first systematic application of XRAI to AD 

detection while simultaneously developing a practical clinical interface that enables healthcare 

professionals to access AI-powered diagnostic capabilities with comprehensive explainable insights and 

integrated workflow support that bridges the gap between advanced AI research and practical healthcare 

deployment for trustworthy, interpretable diagnostic tools in real-world clinical settings.   

Future AI systems should be designed to function as part of routine clinical practice, offering 

interpretable predictions that can be understood and trusted by healthcare professionals without requiring 
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specialized technical expertise. Combining various neuroimaging modalities with longitudinal patient 

data may lead to more accurate predictions of disease onset and progression, supporting earlier and more 

personalized interventions. There is a pressing need for objective, standardized metrics to evaluate the 

quality and clinical relevance of AI-generated explanations, enabling fair comparisons between methods. 

Future models should include mechanisms for identifying and correcting demographic or dataset-related 

biases to ensure fairness, safety, and generalizability across diverse populations. Developing frameworks 

that can handle both 2D and 3D neuroimaging data while maintaining consistent explainability will 

improve the practicality of AI-based tools in real-world settings. 
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