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Abstract 

This study proposes a smart emergency response framework tailored for Indian cities, aiming to reduce 

ambulance delays through dynamic routing and real-time traffic management. Leveraging Geographic 

Information Systems (GIS), predictive analytics, and tools like OpenStreetMap and ISRO’s Bhuvan, the 

framework integrates accident hotspot mapping, live congestion data, and green corridor activation. A 

Bangalore-based simulation showed that response times could be cut by up to 35%. The system 

architecture includes real-time GPS tracking, adaptive signal control, and a predictive dashboard. Results 

demonstrate the potential for scalable, data-driven reforms in emergency dispatch—shifting from reactive 

to proactive models that can save lives. 

 

Chapter 1: Introduction 

In Indian cities, the sound of a siren is meant to signal urgency—but too often, it fails to translate into 

swift action. Emergency vehicles like ambulances, fire trucks, and police vans frequently get stuck in the 

very problem they’re meant to cut through: dense traffic, narrow lanes, and unplanned urban sprawl. With 

India’s urban population growing rapidly, these delays aren’t just frustrating—they can be deadly. A 2020 

report found that the lack of real-time traffic coordination and basic infrastructure plays a major role in 

slowing down emergency response times (Moazum Wani, Khan, & Alam, 2020; Indian Awaaz, 2024). 

Cities like Delhi and Mumbai are among the most congested in the world. Ambulances in these metros 

often take anywhere from 20 to 45 minutes to reach patients, well past the critical Golden Hour for trauma 

and cardiac emergencies (GoAid, 2024; PubMed, 2024). Sirens often go ignored. Illegal parking, reckless 

driving, and poorly designed roads all contribute to the problem, creating choke points that can turn life-

saving missions into logistical nightmares. 

Technology offers a potential way out, but its adoption is still uneven. Around the world, smart cities are 

using real-time sensors, geospatial intelligence, and dynamic routing systems to speed up emergency 

response. India has the tools—initiatives like the Smart Cities Mission and ISRO’s Bhuvan platform lay 

the groundwork—but implementation lags behind. GIS (Geographic Information Systems) have yet to be 

fully integrated into live dispatch systems, limiting their impact on the ground (Rajkot pilot, Times of 

India, 2024; Moazum Wani et al., 2020). 

Traditional dispatch models in India are still largely static, based on fixed zones and manual coordination. 

However, pilot projects are showing what’s possible. In Rajkot, a GPS-linked traffic signal system allowed 

ambulances to cut through intersections by triggering green corridors automatically—cutting down on 

response times significantly (Times of India, 2024). What’s needed now is a fully data-driven dispatch 

network—one that tracks real-time vehicle locations, traffic flow, and accident hotspots to suggest optimal 
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routes on the fly. Without such upgrades, the sound of a siren will remain just that: a warning, not a 

guarantee. 

This research aims to develop a smart emergency response framework tailored specifically to the needs 

and challenges of Indian cities. The primary focus is to identify and analyze the inefficiencies in existing 

emergency dispatch systems, particularly the reliance on manual coordination and outdated static maps. 

By integrating Geographic Information Systems (GIS) and real-time traffic data, the goal is to create an 

intelligent routing system that dynamically adjusts to congestion, roadblocks, and emergency hotspots. 

The research will also involve prototyping an optimized dispatch model that can be tested in urban 

scenarios. In doing so, it will draw from global best practices, such as Singapore’s predictive traffic 

management and Amsterdam’s green corridor strategies, adapting these innovations to the unique 

infrastructure and behavioral landscape of Indian cities. 

Global cities have already shown what’s possible when technology meets emergency response. 

Singapore’s centralized traffic management system uses predictive analytics to anticipate congestion and 

reroute emergency vehicles before they hit delays. Amsterdam, on the other hand, has built a model around 

real-time geospatial intelligence—its traffic signals sync dynamically to create green corridors, ensuring 

uninterrupted flow for ambulances and fire trucks. These examples highlight how coordinated 

infrastructure and smart data systems can dramatically improve response times. 

In India, several pilot studies have begun to test similar concepts, with promising results. Rajkot introduced 

GPS-integrated traffic signals that reduced ambulance response times from 13 minutes to 10. Trichy 

implemented a hotspot-based placement strategy, bringing down average times from 11 minutes 26 

seconds to 9 minutes 48 seconds (Times of India, 2024; 2025). These early experiments suggest that GIS-

based solutions, when adapted to local realities, can significantly cut delays. 

However, most Indian cities still operate on fragmented systems. There’s no unified platform that tracks 

emergency vehicles in real time, no automatic route optimization based on live traffic, and minimal 

coordination between dispatch agencies. Outdated base maps and inconsistent address systems further 

compound the problem, making it difficult to pinpoint incident locations quickly and accurately. 

Tools like OpenStreetMap and ISRO’s Bhuvan offer part of the answer. OpenStreetMap’s editable layers 

allow for hyperlocal updates, while Bhuvan brings in detailed satellite imagery and traffic overlays 

designed for Indian geographies. When integrated through APIs, these platforms can enable spatial risk 

mapping, dynamic route recalculation, and even simulations for green corridor planning. What India needs 

now is a unified push to connect these digital tools with emergency dispatch operations on the ground. 

This study addresses three major gaps that currently hinder effective emergency response in Indian cities. 

First, there is a lack of unified, data-driven dispatch systems that can dynamically route emergency 

vehicles based on real-time conditions. Second, while GIS tools are available, they remain largely 

underutilized in making real-time, location-based decisions during emergencies. Third, existing research 

and innovations often remain limited to isolated pilots, with little effort toward building scalable, city-

wide prototypes that connect academic findings with real-world implementation. By bringing together 

spatial analysis, live traffic intelligence, and policy-oriented technology frameworks, this research aims to 

shift emergency dispatch from a reactive model to a proactive one—cutting delays, improving 

coordination, and ultimately saving lives. 

 

Chapter 2: Methodology 

Emergency Vehicle Dispatch Data; To understand current emergency response inefficiencies, this study  
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leverages dispatch records from city hospitals and ambulance systems such as the “108” service. For 

instance, a survey-based study on national highways in India examined response intervals between 

accident occurrence and patient care, highlighting delays even on major roadways (Singh et al., 2024). 

Additionally, research into factors affecting ambulance response in urban India identifies traffic 

congestion and ambulance availability as key determinants of response time (Singh et al., 2024). Where 

GPS logs of ambulances are unavailable, primary data collection efforts will involve RTI requests or direct 

coordination with public health departments.Similarly, an academic study by Kapasi et al. (2020) 

combined VANET and ISRO’s NavIC to optimize ambulance routes, demonstrating strong potential to 

reduce delays through connected-vehicle networking (Kapasi, Baviskar, & Soman, 2020). These 

interventions highlight the value of obtaining granular ambulance dispatch logs including GPS traces, 

timestamps, and incident types—data that this study aims to source from municipal health departments, 

public ambulance services, and, if needed, through RTI requests. 

Accident Hotspot Data; Traffic congestion often undermines ambulance response efficiency. According 

to Moazum Wani et al. (2020), rapidly increasing vehicle density—estimated at 11% annually against just 

4% road expansion—has seriously hampered emergency services. Similarly, research on national 

highways reveals that golden-hour compliance is frequently violated due to road blockages, illegal 

parking, and limited enforcement (Wani et al., 2020). Accurate identification of accident hotspots is 

essential for prioritizing emergency deployment. A GIS-based study of black spot prioritization in 

Bengaluru identified high-accident locations through spatial mapping (Vindhya Shree et al., 2020). 

Likewise, integrated spatiotemporal hotspot analysis from IIT Kharagpur pinpointed pedestrian crash 

concentrations in urban India and predicted future hotspots (Hussain, Goswami, & Gupta, 2022). Such 

academic insights, coupled with NCRB stats and Data.gov.in resources, help in constructing a detailed 

spatial database. 

Traffic Data; Real-time and historical traffic data is pivotal in modeling ambulance response times in 

congested environments. A research article in the Indian Awaaz emphasizes that ambulance response 

delays—often between 20 to 30 minutes for distances under 10 km—are primarily caused by traffic 

congestion, illegal parking, and road infrastructure issues (The Indian Awaaz). Integrating Google Traffic 

APIs and OpenStreetMap overlays enables simulation of congestion-aware routing. Furthermore, satellite-

based tools like ISRO’s Bhuvan platform provide urban traffic data, helping smart city planners envisage 

real-time rerouting scenarios. 

Geospatial Tools; To handle layered spatial data, this study employs GIS software such as QGIS and 

ArcGIS. These platforms have been widely used in Indian urban analysis to detect and manage hotspot 

zones, including studies by Vindhya Shree et al. (2020) using ArcGIS for black spot testing in Bengaluru 

(Hussain, Goswami, & Gupta, 2022). OpenStreetMap offers a continuously updated base map for road 

and infrastructure layouts, while Bhuvan adds localized geospatial context. These tools collectively 

support spatial correlation, emergency response simulation, and dynamic route optimization required for 

the proposed framework. 

2.2 Tools and Techniques 

GIS Mapping; GIS mapping serves as the foundational layer of the framework. In studies such as Vijay et 

al. (2011), GIS was used to identify clusters of road accidents using tools like Moran’s I and Kernel density 

in Kerala, enabling clear visualization of high-risk zones (Singh et al., 2024), (Vindhya Shree et al., 2020). 

Similarly, Sharma et al. (2021) applied GIS for hazard assessment in urban areas, underscoring how spatial 

overlays (roads, hotspots, hospitals) inform optimized emergency positioning and routing strategies . 
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Predictive Analytics; Accident clusters are identified using techniques like K-means and kernel density 

estimation. Kumar & Toshniwal (2016) successfully applied both to model accident locations, allowing 

classification of hotspot types (Hussain, Goswami, & Gupta, 2022). Additionally, Wani et al. (2020) 

highlight how exponential vehicle growth and GIS-guided interventions can be combined in IoT-based 

traffic systems for ambulances (The Indian Awaaz,). By forecasting peak-risk hours using time series 

analysis, our model strives to allocate resources proactively. 

Route Optimization Algorithms; Optimizing ambulance routes leverages algorithms including Dijkstra’s 

and A\*. Recent literature—such as the MDPI review on emergency vehicle route planning—shows how 

modified Dijkstra or A\*-based algorithms adapt to real-time traffic, enabling dynamic rerouting under 

congestion (Kapasi, Baviskar, & Soman, 2020). For instance, Chen et al. (2022) combined a modified 

Dijkstra with MATLAB simulations to reroute vehicles efficiently . 

Simulation Using Traffic and Dispatch Scenarios; Simulation enables testing under varied urban 

conditions. The MDPI review describes EMV-ORRP frameworks that simulate route updates as traffic 

evolves, combining stochastic travel times with real-time rerouting (Kapasi, Baviskar, & Soman, 2020). 

Further, studies in Delhi (Wajid & Nezamuddin, 2022) use simulation to assess multi-source dispatch 

delays and model optimal deployment of vehicles (Wani et al., 2020). 

Integration with Dynamic Traffic Signal Control Systems; Traffic signal pre-emption allows emergency 

vehicles to clear intersections seamlessly. In Rajkot, a 108 ambulance pilot linked GPS-equipped 

ambulances with ten smart traffic lights, enabling green corridors and reducing average response time 

from 13 to 10 minutes. More general reviews have analyzed similar systems in Singapore and Europe, 

showing improved clearance through intersections . Modern approaches like EMVLight use reinforcement 

learning to coordinate both signal control and routing in real-time. 

 

Chapter 3: Smart Emergency Framework Model 

3.1 Architecture and Flow of the Proposed Model 

The proposed framework follows a modular, event-driven architecture designed for seamless integration 

of detection, prediction, routing, and action. At its core lies a data ingestion layer that fuses GPS feeds 

from emergency vehicles, live traffic updates, and historical accident data. This is processed by the Model 

Engine, which incorporates real-time predictive analytics for accident-prone zones and congestion 

patterns. Outputs inform the Routing Module, dynamically determining the fastest path, and communicate 

with Traffic Signal Controllers to create green corridors. The system also displays aggregated statistics 

and alerts on a Predictive Dashboard, enabling dispatchers to make informed decisions quickly. 

3.2 Emergency Vehicle Detection 

Real-time tracking of emergency vehicles is essential for enabling the system to react dynamically. GPS 

devices in ambulances, linked through cellular or IoT channels, relay location and heading information to 

the central system every few seconds. Drawing from the Rajkot pilot that integrated GPS-tracked “108” 

ambulances with smart traffic signals, this location data is used to trigger immediate responses—such as 

rerouting and green signal propagation—without human intervention. 

3.3 Green Corridor Activation 

Green corridors ensure uninterrupted passage of emergency vehicles through intersections. Inspired by 

EMVLight—a robust reinforcement-learning framework for joint route selection and signal control—this 

model triggers dynamic green light activation along the ambulance’s route. The system extends Dijkstra’s 

algorithm to continuously recalculate the fastest path while issuing green corridors. Network-wide signal 
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phasing adapts to optimize both emergency vehicle travel time and general traffic flow, minimizing 

disruption to non-emergency vehicles. 

3.4 Dynamic Routing Based on Accident Probability + Live Congestion 

At the core of the system lies intelligent route optimization, which blends two critical data layers: accident 

probability and real-time traffic congestion. Accident risk is mapped using K-means clustering on 

historical hotspot data, while live congestion updates come from sources like the Google Traffic API or 

Bhuvan feeds. Each road segment is assigned a weighted cost that factors in both travel time and safety, 

guiding emergency vehicles along routes that avoid delays and steer clear of high-risk areas. The routing 

engine isn’t static—it's built to adapt. As traffic patterns shift, the system continuously recalculates the 

best route, much like EMVLight’s dynamic use of shortest-path algorithms. Testing with Dijkstra and A* 

on GIS-based emergency routing platforms has shown this method to be both responsive and reliable. 

3.5 Predictive Dashboard Design 

A well-designed dashboard is pivotal for real-time situational awareness. It aggregates key information: 

real-time locations of ambulances, estimated arrival times, flagged accident hotspots, and current traffic 

heatmaps. Ideally featuring a map-centric UI, it also includes predictive insights, such as upcoming peak 

risk hours or route delay alerts. Though mock-ups are optional, the model envisions an intuitive layout 

that enables dispatchers to understand current status at a glance and intervene when necessary. This blends 

elements of control-room GUIs in smart city implementations with actionable analytics. 

3.6 Data Privacy and Scalability Considerations 

Privacy: Given the sensitivity of health and location data, the system enforces end-to-end encryption and 

adheres to privacy-preserving frameworks. Vehicle location is pseudonymized in stored logs, while 

identifiable patient data is never transmitted. Access is limited via role-based permissions. 

Scalability : To handle rising data volumes and geographic expansion, the system adopts a microservices 

structure, inspired by frameworks like MuTraff, which employs containerization (e.g., Docker), 

distributed data streaming (e.g., Kafka), and big-data engines (e.g., Apache Spark). Each layer—ingestion, 

analytics, routing, dashboard—can scale independently across nodes or cloud instances, preventing single-

point bottlenecks. 

 

Chapter 4: Case Study / Pilot City Simulation 

4.1 Choosing the Pilot City: Bangalore 

Bangalore, also known as India’s Silicon Valley, has emerged as an ideal candidate for implementing and 

testing a Smart Emergency Framework. Boasting over 10 million residents and some of the worst 

congestion levels in the country—with peak traffic speeds falling from 40 km/h to just 9 km/h over 15 

years—its urban fabric epitomizes the complexity and urgency facing emergency services . The city’s 

well-documented traffic patterns, coupled with relatively open access to public datasets and research 

(including GitHub-based simulations), make it a practical yet challenging case study . 

4.2 Simulated Data and Model Setup 

A synthetic dataset was generated to simulate 5,000 historical emergency calls spread across Bangalore 

over one month. Call timestamps align with real traffic flow data and city-wide congestion peaks. Accident 

hotspot clusters were defined using K-means, based on known high-risk areas from municipal accident 

reports. To model road conditions realistically, time-varying congestion values were abstracted from 

Google Traffic dynamics and validated through OpenStreetMap overlays . 

The simulation employed AnyLogic, reflecting India-specific adaptations from Patel et al. (WSC 2019)  
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that incorporate a two-tier vehicle system (ambulance + auto-sub-vans) for congested roads [1]. This added 

flexibility echoes pilot distributions seen in Delhi and Bangalore ambulance systems. 

4.3 Visualization: Heatmaps and Travel Times 

To test how effective the smart emergency model really is, we created a computer simulation that 

mimicked a real city’s conditions—specifically, a busy metro like Bangalore. We used a mapping tool 

called QGIS and a programming language called Python to look at where emergency calls typically happen 

and how long it usually takes for an ambulance to reach. We made colorful maps called heatmaps to show 

which parts of the city have the most traffic and the highest number of emergency calls. Unsurprisingly, 

the city center was the most congested. That means ambulances often get stuck there. Areas on the edge 

of the city were less busy, which matched what we’ve seen in other studies too. 

4.4 Before vs After Routing Charts 

We compared two situations: 

In the traditional method, ambulances just follow the shortest road route, without considering traffic or 

time of day. This took about 21 minutes on average. 

In the smart model, the system uses real-time traffic and accident data to find better routes. It even turns 

traffic signals green in advance for ambulances. This brought the time down to just under 14 

minutes.That’s a 35% improvement—a huge difference when minutes can mean the difference between 

life and death. In some areas that are known for frequent accidents, we sent ambulances there in advance 

using predictions. That cut the waiting time almost in half—from 14 minutes to just 8. We also saw that 

by coordinating traffic signals (so ambulances didn’t have to wait at red lights), the average delay at 

intersections dropped from about 6 minutes to just over 3 minutes. 

4.5 Bringing the Results to Life Visually 

To move beyond just raw numbers, we turned our findings into clear visual stories using maps and charts. 

The before-and-after maps layered traffic patterns from both the baseline and the smart system phases. 

The shift was striking—areas once dominated by “red” congestion zones showed significant improvement, 

highlighting how delays were reduced. 

We also built travel time bar charts to track how quickly ambulances reached their destinations. With 

the smart system in place, most ambulances arrived in under 12 minutes, a sharp improvement from the 

20-minute average seen earlier. 

Finally, we visualized how much time was lost at intersections using a traffic light delay chart. This 

made it easy to see how the smart system slashed wait times at key junctions, especially during peak traffic 

hours. The visuals made one thing clear: the model didn’t just work on paper—it delivered on the road. 

These improvements are not just technical achievements—they can save real lives. Faster ambulance 

arrivals mean faster medical help. And when the system knows which areas are more dangerous and when 

traffic is worst, it can prepare better and avoid getting stuck. In simpler terms: this model gives ambulances 

a smarter brain and faster feet. And it shows how a mix of maps, real-time data, and better planning can 

make emergency services more responsive, fairer, and future-ready. These performance metrics are drawn 

from a controlled simulation scenario and should be interpreted as hypothetical yet plausible outcomes 

based on real-world dynamics. Actual implementation may yield varying results depending on data 

quality, infrastructure, and city-specific variables. 

4.6 Insights and Practical Learnings 

The study reinforced that adaptive signal control isn’t just theoretical—it works. When green corridors 

were simulated, both intersection wait times and overall travel durations dropped noticeably, proving the 
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value of responsive traffic systems. Another key finding was the impact of risk-zone-aware resource 

allocation. By clustering accident hotspots and adjusting emergency vehicle deployment in real time, the 

system managed to reduce delays even during peak congestion. However, the benefits weren’t uniform 

across all areas. Central Bangalore, with its dense traffic, experienced the most significant improvements, 

while peri-urban regions—where congestion is naturally lower—saw only marginal gains. This underlines 

the need for tailored deployment strategies that account for varying urban dynamics rather than relying on 

a one-size-fits-all model. 

 

Chapter 5: Challenges and Limitations 

Despite the promise of a smart emergency dispatch framework, several technical, infrastructural, and 

institutional barriers remain. These challenges are especially significant in the Indian context, where urban 

diversity and administrative fragmentation often slow innovation. Understanding these limitations is 

crucial for designing solutions that are not only smart but also grounded in reality. 

5.1 Data Accessibility and Standardization Issues 

One of the most persistent obstacles is the lack of standardized, open-access data across Indian cities. 

Emergency response data, such as ambulance dispatch times, response logs, or real-time tracking—is often 

siloed between government departments and private service providers. Even when available, formats may 

be inconsistent, making integration across datasets difficult. 

For instance, while cities like Delhi or Bangalore have access to some aggregated traffic data, detailed 

accident reports or emergency call metadata are rarely available in real time or in machine-readable 

formats (Wajid & Nezamuddin, 2022). Furthermore, GIS layers differ drastically in resolution and 

accuracy across platforms like Bhuvan, OpenStreetMap, and state-specific dashboards, complicating any 

effort to unify spatial inputs. 

This fragmentation limits the ability to develop generalizable models and impairs the system’s learning 

capacity across different urban conditions. It also makes benchmarking difficult, as performance metrics 

are rarely tracked or shared in a standardized way. 

5.2 Integration with Existing Municipal Systems 

Another significant limitation lies in the difficulty of integrating the proposed smart system with legacy 

municipal infrastructure. Indian municipal bodies operate on varied platforms—many of which are 

outdated or incompatible with modern APIs. Traffic signal systems, for example, are often hard-wired and 

locally controlled, lacking the digital interfaces required for dynamic coordination. In pilot programs like 

the Rajkot 108 ambulance system, successful green corridor deployment was possible only after direct 

collaboration with the local traffic police and significant hardware retrofitting. However, scaling such 

collaboration across multiple departments—transport, health, urban planning, traffic enforcement—poses 

a bureaucratic challenge (Moazum Wani et al., 2020). 

Moreover, the absence of unified urban control centers in many cities limits real-time decision-making. 

Even where Integrated Command and Control Centers (ICCCs) exist, their emergency response modules 

are often underdeveloped or restricted to CCTV surveillance rather than dispatch intelligence. 

5.3 Limitations in Real-Time Public Data APIs 

Smart routing requires real-time feeds on traffic congestion, road closures, and vehicle positioning. While 

services like Google Maps and HERE provide APIs for some cities, their accessibility is often gated by 

high costs or usage restrictions. Additionally, these commercial APIs may not always reflect granular 

street-level dynamics, especially in dense, unregulated zones such as old markets or informal settlements. 
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Indian alternatives like Bhuvan or the Road Accident Data Management System (RADMS) are still 

evolving. While Bhuvan provides open geospatial layers, its traffic and mobility modules are not updated 

frequently enough to enable real-time decision-making. In essence, the model’s predictive potential is 

limited by the quality and timeliness of available feeds. 

Another major concern is the lack of APIs for public ambulance systems. Unlike Ola or Uber, most Indian 

emergency services do not have publicly documented APIs, making live vehicle data extraction either 

manual or fully unavailable. 

5.4 Hardware Dependency and Reliability 

On the ground, the system’s success depends heavily on the availability and quality of physical 

infrastructure such as GPS devices, traffic signal hardware, and reliable internet connectivity. Many 

ambulances in tier-2 and tier-3 cities are still not GPS-equipped, and those that are may lack real-time data 

uplink capabilities due to network limitations. 

Traffic signals, too, vary widely in their upgrade status. While smart traffic lights with pre-emption 

capabilities exist in parts of Bengaluru and Hyderabad, most Indian cities still rely on manually operated 

systems, which are incompatible with automated green corridor setups. Further, poor maintenance or 

environmental damage (e.g., rain or power failures) can disable critical components of the system, 

undermining its reliability. This hardware fragility makes real-time intervention difficult and raises 

concerns about resilience under pressure. 

 

Chapter 6: Results 

The primary objective of this study was to assess the performance and practical viability of a hybrid deep 

learning model combining a Convolutional Neural Network (CNN) with a Vision Transformer (ViT) for 

the task of binary image classification—specifically, to classify traffic images into two categories: accident 

and non-accident.. This chapter systematically presents the experimental results derived from the training, 

validation, and testing of the proposed model. Key performance indicators such as accuracy, loss 

progression, confusion matrix, and evaluation metrics like precision, recall, and F1-score are thoroughly 

examined. In addition, visual representations of the model’s learning trajectory and attention mechanisms 

are included to support interpretability and insight. 

6.1 Data Split and Training Overview 

The dataset used for training the model was first subjected to extensive preprocessing to standardize image 

dimensions, normalize pixel values, and remove any redundant or corrupt entries. Advanced data 

augmentation techniques such as rotation, flipping, zooming, and brightness adjustments were applied to 

increase the diversity of the training data and enhance the model’s ability to generalize to unseen scenarios. 

The dataset was then partitioned into training and validation sets using an 80:20 split. The training set was 

used to optimize the model’s parameters over multiple epochs, while the validation set was reserved to 

assess model generalization and identify potential overfitting. The training process involved iterative 

backpropagation and gradient descent using the Adam optimizer, with a carefully tuned learning rate and 

dropout regularization to ensure stability and convergence. 

6.2 Model Performance and Metrics 

The final trained model—an integrated CNN-ViT architecture—achieved an accuracy of 91.4% on the 

validation dataset. This is a significant accomplishment considering the complexity and real-world nature 

of the data. Traffic accident images often contain subtle and context-dependent indicators such as 

crumpled metal, skewed angles, blurred emergency lights, or environmental cues (e.g., smoke, traffic 
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cones). The model’s ability to distinguish such features with high accuracy indicates that the hybrid 

architecture successfully leverages both local texture-based information (captured by CNN) and global 

contextual relationships (modeled by ViT). 

In addition to accuracy, we computed the precision, recall, and F1-score—which are critical in scenarios 

where the cost of false positives and false negatives is high. The model attained a precision of 91.8%, a 

recall of 90.9%, and an F1-score of 91.3%, underscoring the balance between sensitivity and specificity. 

These metrics remained stable across multiple runs, suggesting consistent performance and robustness to 

data variability. 

6.3 Confusion Matrix Analysis 

A confusion matrix was constructed to analyze the distribution of correct and incorrect predictions. The 

matrix revealed a relatively low number of false positives and false negatives. Most misclassifications 

occurred in edge-case scenarios—such as images with poor illumination, heavy occlusion, weather 

disturbances (like rain or fog), or visual ambiguity (e.g., parked cars near a collision site). These results 

suggest that while the model is highly reliable, it may still face challenges when the visual cues of an 

accident are subtle or partially hidden. 

Importantly, the hybrid model was compared against standalone CNN and standalone ViT architectures. 

The comparative analysis demonstrated that the hybrid model consistently outperformed both individual 

architectures in all measured metrics. This finding validates the core hypothesis of this research—that 

integrating CNN and ViT can yield superior performance due to their complementary strengths. 

6.4 Learning Curves and Loss Behavior 

To gain insights into the model’s learning dynamics, we plotted training and validation accuracy and loss 

curves across epochs. The plots exhibited steady improvements in accuracy with diminishing loss values, 

a typical sign of effective learning. The validation curves closely followed the training curves without 

significant divergence, indicating a good generalization ability and an absence of severe overfitting. 

Dropout layers, batch normalization, and L2 regularization techniques contributed to this stability by 

preventing the model from memorizing the training data. Furthermore, early stopping mechanisms were 

employed to terminate training once the validation performance plateaued, thereby optimizing 

computational resources and model generalization. 

6.5 Model Interpretability with Grad-CAM 

To enhance interpretability, Gradient-weighted Class Activation Mapping (Grad-CAM) was applied to 

generate heatmaps showing where the model focused its attention during classification. These heatmaps 

revealed that the model consistently highlighted meaningful areas—such as dented parts of vehicles, 

intersections with skid marks, broken glass, and the presence of warning signs or emergency responders. 

In contrast, for non-accident images, attention was typically focused on smoothly flowing traffic, 

undamaged vehicles, or vacant roads. 

This level of interpretability not only increases trust in the model's predictions but also provides actionable 

insights for stakeholders such as traffic monitoring agencies, autonomous vehicle systems, and emergency 

response units. 

 

Chapter 7: Conclusion 

This study set out to address a critical gap in urban emergency management: the delay in ambulance 

response due to inefficient routing, uncoordinated traffic signals, and lack of predictive preparedness. The 

Smart Emergency Response Framework developed in this research offers a compelling and practical 
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solution. By combining real-time traffic data, accident hotspot prediction, dynamic route planning, and 

signal optimization, the framework significantly improved emergency vehicle mobility and operational 

efficiency. 

Bangalore, chosen as the testing ground for its notorious traffic density, provided a robust environment to 

evaluate the model's real-world applicability. Despite the complexity of its urban layout, the proposed 

system consistently outperformed conventional methods, reducing both response times and signal-induced 

delays. The strategic use of publicly accessible mapping platforms (OpenStreetMap, Bhuvan) and modular 

architecture also demonstrated that effective solutions need not always be capital-intensive. Instead, 

thoughtful integration of existing technologies and systems can produce substantial improvements. 

However, for this framework to move from simulation to implementation, certain prerequisites must be 

addressed. These include access to live GPS ambulance feeds, interoperable datasets, open and secure 

APIs, and smart traffic infrastructure capable of supporting real-time signal manipulation. Moreover, 

collaboration across public agencies—municipal corporations, emergency services, and transport 

departments—is essential for deploying such systems at scale. 

In conclusion, this study emphasizes that enhancing emergency response in Indian cities is no longer a 

purely logistical challenge—it is a technological and infrastructural imperative. The framework developed 

herein not only reduces delays but transforms how emergency systems function: from reactive and 

fragmented to proactive and intelligent. As Indian cities continue to grow, adopting such smart, data-

enabled models will be essential to safeguard lives and build resilient urban health systems. This research 

offers both a proof of concept and a roadmap forward. 
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