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Abstract 

Neurological diseases affect over one billion people globally, yet countless communities still lack basic 

access to specialist care, especially during emergencies. This work presents the first unified artificial 

intelligence platform capable of detecting and analyzing four major neurological conditions (brain 

tumors, strokes, Alzheimer's disease, and multiple sclerosis) within a single, web-accessible system. 

SeruNet platform addresses critical gaps in neurological care delivery by integrating condition-specific 

expert systems with advanced explainable AI techniques including one of the first documented 

application of XRAI (eXplanation with Region Attribution Integration) for neurological imaging. The 

unified architecture combines 2D and 3D analysis capabilities across multiple imaging modalities while 

maintaining specialized accuracy for each neurological condition. Key innovations include region-based 

attribution that aligns with clinical reasoning, a novel two-stage multiple sclerosis risk prediction model, 

and comprehensive bias-aware monitoring systems. Web-based deployment eliminates infrastructure 

barriers, enabling immediate access through standard browsers without specialized hardware 

requirements. This unified approach represents a paradigm shift from fragmented, condition-specific AI 

systems toward integrated, accessible neurological diagnostics designed for global health equity and 

immediate clinical deployment. 

 

Keywords: SeruNet, XRAI, Neurological imaging, Multiple imaging modalities, Region-based 
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1. INTRODUCTION 

SeruNet (Smart Explainable Platform for Radiological Understanding) is a unified multi‑modal and 

explainable web‑based intelligence platform capable of detecting and diagnosing brain tumors and 

strokes and predicting Alzheimer’s disease and multiple sclerosis from an integrated platform. 

1.1. Brain Tumor Detection and Classification  

Brain tumor diagnosis [1] represents one of the most challenging medical conditions due to non-specific 

symptomatology and highly variable radiological features in MRI scans, making accurate interpretation 

extremely difficult even for experienced radiologists in high-pressure clinical environments [2,3]. The 

intricate process of MRI scan interpretation is time consuming, requiring specialized expertise and being 
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prone to human error, particularly when handling tumor heterogeneity and challenging anatomical 

structures [4].  

Current deep learning approaches utilizing Convolutional Neural Networks (CNNs) have emerged as the 

most promising solution in neuroimaging, with architectural frameworks based on U-Net, DeepLabV3+, 

EfficientNet, and ResNet50 demonstrating state-of-the-art performance on benchmark datasets including 

BraTS and TCIA [5–10]. However, these high-performance models typically operate as "black boxes," 

providing predictions without explanations regarding their decision-making processes, creating serious 

drawbacks in clinical applications where accountability and interpretability are paramount [11,12]. 

The lack of transparency has contributed to increasing interest in Explainable Artificial Intelligence 

(XAI) development [13]. NeuroXAI accommodates various backpropagation-based XAI methods and 

provides 2D and 3D visualizations specifically designed for classification and segmentation tasks [11]. 

The Neuro-XAI pipeline integrates DeepLabV3+ with Bayesian hyperparameter optimization and 

entropy-based uncertainty estimation to generate reliable and interpretable results [12]. The integration 

of EfficientNetB0 with Grad-CAM achieved over 98% classification accuracy while producing 

interpretable visual diagnostic saliency maps consistent with clinical expectations [9]. 

XAI techniques including Grad-CAM, SHAP, LIME, SmoothGrad, and Integrated Gradients generate 

visualizations in heatmaps and attribution maps that accurately locate input image areas contributing 

significantly to model decisions [4]. These visual representations verify that models concentrate on 

clinically relevant areas such as enhancing tumor edges rather than tissues with no clinical significance 

[9]. Regulatory demands such as the EU's GDPR now require interpretability of algorithms in clinical 

decision-making systems [14,15]. 

1.2. Stroke Detection and Risk Prediction  

Stroke represents the second leading cause of death globally and the third principal cause of disability 

worldwide [16–18]. The Hemorrhage Evaluation and Detector System for Underserved Populations 

(HEADS-UP) achieved 95.80% average precision, 91.40% precision, and 91.40% recall for intracranial 

hemorrhage detection using Google Cloud Vertex AutoML with 752,803 labeled images, specifically 

designed for resource-poor healthcare settings [19]. 

Advanced hybrid architecture has demonstrated remarkable performance. The ViT-LSTM model 

combining Vision Transformer and Long Short-Term Memory networks achieved 94.55% accuracy on 

the BrSCTHD-2023 dataset from Rajshahi Medical College Hospital and 96.61% on the Kaggle brain 

stroke dataset [20]. This method incorporated explainable AI methods including attention maps, SHAP, 

and LIME to promote clinical interpretability. Compact CNN models achieved 97.2% validation 

accuracy with 20.1 million parameters and 76.79 MB memory footprint, representing a 25% parameter 

and 76% memory decrease compared to state-of-the-art solutions [21]. 

The clinical importance of rapid stroke identification becomes apparent considering that ischemic 

strokes comprise 85% of all cases, with current field triage stroke scales exhibiting false-positive rates of 

50-65% and peak accuracy of only 79% with NIHSS scores of 11 or more [22]. Portable diagnostic 

technologies demonstrate potential solutions: the Strokefinder MD100 achieves 100% sensitivity and 

75% specificity for intracranial hemorrhage detection within 45 seconds [22]. 

Interpretable machine learning models achieved 92.0% accuracy for cognitive disorder classification 

using Random Forest with fusion features and 82.5% accuracy for motor disorder classification using 

Linear Discriminant Analysis [23]. EfficientNetB0 for brain stroke classification achieved 97% 

classification accuracy, 96% precision, 97% recall, and 97% F1-score [24]. Automatic deep learning 
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systems for malignant cerebral edema prediction achieved 100% recall and 87% precision using Long 

Short-Term Memory neural networks [25]. 

For stroke risk prediction, studies utilizing datasets with 5,110 patient records demonstrated that 

Random Forest achieved the highest accuracy of 97% after preprocessing including SMOTE-based class 

balancing [26,27]. Stacking algorithms achieved 98.9% AUC, 98% accuracy, and 97.4% recall, 

precision, and F-measure [28]. Transfer learning methods using VGGFace models achieved 97% 

accuracy in classifying healthy versus sick individuals [29]. Comprehensive saliency technique 

comparisons indicated that ScoreCAM, XRAI, GradCAM, and GradCAM++ consistently yielded 

focused and clinically meaningful attribution maps [30]. 

1.3. Alzheimer's Disease Assessment and Detection  

Alzheimer's disease affects approximately 55 million individuals globally, with projections doubling by 

2050, representing the most prevalent form of dementia characterized by amyloid plaques and 

neurofibrillary tangles [31,32]. The disease progresses through distinct stages from cognitively normal 

aging through mild cognitive impairment to full AD dementia, with 10-15% of MCI patients progressing 

to AD annually [33]. 

Machine learning approaches have transitioned from traditional techniques like Support Vector 

Machines, Random Forest, and logistic regression to sophisticated deep learning frameworks [34]. 

CNNs have emerged as the de facto architecture, with studies reporting that MobileNetV3 achieved 93% 

accuracy and DenseNet121 reached 88% accuracy for AD classification [35]. Advanced architectures 

like 3D Hybrid Compact Convolutional Transformers integrate local CNN feature extraction with global 

transformer attention mechanisms, achieving 96.06% accuracy for multi-class classification [36]. 

Multimodal approaches combining T2-weighted MRI with DTI using YOLOv11 architecture achieved 

93.6% sensitivity, 91.6% recall, and 96.7% mAP50 for simultaneous structural and microstructural brain 

analysis [31]. Ensemble methods demonstrated increased diagnostic accuracy by combining various 

models to capitalize on complementarities and reduce individual model biases [35]. 

Explainable AI development has attempted to address clinical interpretability challenges. Grad-CAM 

utilizes gradient information for spatial region identification, SHAP provides quantitative values for 

each input component based on game theory reasoning, and LIME generates explanations through 

interpretable surrogate models [37]. Layer-wise Relevance Propagation (LRP) operates through 

backpropagating relevance scores layer by layer, while XRAI represents a considerable improvement 

over pixel-level attribution techniques by adopting region-based methodology that over-segments 

images into coherent anatomical regions, XRAI's application to medical imaging, particularly 

neurological disorders detection, remains unexplored in published literature, with existing medical AI 

research predominantly relying on Grad-CAM, LIME, and SHAP approaches [38]. 

Critical limitations persist in current XAI approaches, including low specificity with many methods 

producing explanations highlighting anatomically irrelevant regions, absence of standard evaluation 

metrics, and minimal deployment in clinical practice due to black-box mechanisms. Current 

explainability approaches typically do not achieve the degree of clinical interpretability necessary for 

real-world deployment, with classical gradient-based approaches commonly identifying anatomically 

irrelevant areas or generating inconsistent explanations [39]. 

1.4. Multiple Sclerosis Prediction and Risk Assessment 

Multiple sclerosis research has focused on predicting conversion from clinically isolated syndrome to 

clinically definite multiple sclerosis using machine learning approaches. Studies investigating 84 CIS 
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patients, extracting over 120 lesion-shape and intensity features from 3D FLAIR and T1-weighted MRI 

scans, achieved 84.5% accuracy using random forest classification, significantly outperforming 

conventional dissemination-in-space criteria [40]. Combined lesion-load metrics with demographic and 

clinical variables in 112 CIS patients demonstrated improved discrimination (AUC = 0.82) using support 

vector machines with radial basis function kernels, although interpretability was limited to global 

feature-importance weights [30]. 

Enriched MRI data with metabolic information from MR spectroscopy in 96 CIS patients achieved AUC 

of 0.88 using logistic regression incorporating volumetric lesion measures and spectroscopy features, 

though requiring specialized acquisition protocols [41]. Linear SVM on 68 CIS patients using 

handcrafted descriptors of lesion shape and spatial distribution achieved 78% accuracy while 

underscoring the value of spatial lesion topology [42]. 

Deep learning methods have shown exceptional promise. Multi-center cohorts of 212 CIS patients across 

three North American hospitals, combining CNN features with 25 clinical variables, achieved AUC of 

0.91, yet interpretability was limited to post-hoc saliency maps offering only coarse localization without 

quantifying individual feature contributions [43]. Evaluation of five supervised classifiers on 411 CIS 

patients from dual sites showed Random Forest attaining perfect F1-score on the Mexican subset 

(n=273), though model transparency was limited to permutation-importance rankings [44]. 

Random Forest applied to 265 Mexican-mestizo CIS patients yielded AUC of 0.93 and 87% accuracy 

using Recursive Feature Elimination to reduce 40 variables to 12 primarily imaging and immunological 

markers, yet threshold calibration and formal explainability beyond global feature rankings were not 

addressed [45]. 

 

2. Methodology  

2.1. Overall System Architecture and Design Philosophy 

SeruNet platform is developed as a four-module diagnostic structure, with each module contributing 

complementarily and integrated through a web-based explainable AI interface. The system architecture 

addresses existing gaps in neurological AI systems by offering a unified SeruNet platform that can 

identify brain tumors, classify strokes with risk prediction, diagnose Alzheimer's disease with bias 

monitoring, and estimate multiple sclerosis risk, all within a single, accessible system. The design 

philosophy emphasizes integration with clinical workflows, transparency through explainability, and 

suitability for deployment in under-resourced healthcare environments. 

The network employs a three-tier processing structure consisting of data units, AI inference models, and 

explainability systems, collectively enabling complete neurological testing functionality. Each 

diagnostic module is implemented as a condition-specific expert system, trained exclusively on datasets 

tailored to that condition, thereby ensuring specialized accuracy beyond general-purpose AI solutions. 

Web-based deployment eliminates infrastructure limitations, allowing medical personnel to access 

expert-level diagnostics directly through standard internet browsers, without the need for specialized 

hardware, complex installations, or ongoing technical support.  

2.2. Brain Tumor Classification and Detection Module 

The brain tumor classification module adopts a dual-mode design, combining both 3D volumetric 

analysis and 2D slice-based processing for comprehensive tumor assessment. For 2D classification, two 

publicly available datasets, the Kaggle Brain Tumor MRI dataset and SciDB Brain Tumor dataset were 

merged, resulting in 7,023 individual MRI slices categorized into four tumor classes (glioma, 
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meningioma, pituitary tumor, no tumor). 

The 2D classification system is built on the MobileNetV2 architecture (3,504,872 parameters), while for 

3D volumetric analysis, the BraTS dataset was utilized, which includes multi-modal MRI scans and 

segmentation masks for Tumor Core (TC), Whole Tumor (WT), and Enhancing Tumor (ET). The 

module supports multi-class classification from 2D MRI and binary tumor presence detection from the 

BraTS dataset through specialized architectures optimized for medical imaging. SeruNet platform 

incorporates region attribution through XRAIs and offers interpretable visual explanation aligned with 

the radiologic reasoning for 2D and 3D prediction. 

2.3. Stroke Detection Module 

The stroke detection module follows a dual-framework design, combining image-based classification 

with a risk prediction model. For classification, the TEKNOFEST 2021 dataset, comprising 6,653 

cranial CT images (4,428 normal, 1,131 ischemic stroke, 1,094 hemorrhagic stroke) was utilized. This 

image classification component employs the ResNet-18 architecture (11,689,512 parameters) for 

distinguishing between normal, ischemic stroke, and hemorrhagic stroke conditions.  

The risk prediction module implements a machine learning pipeline using a clinically validated dataset 

of 35,000 patients with 17 predictive features including demographic variables and binary symptom 

indicators. Five algorithms were implemented: Random Forest, XGBoost, Gradient Boosting, Logistic 

Regression, and Support Vector Machine, all undergoing 5-fold stratified cross-validation followed by 

independent test set evaluation. 

2.4. Alzheimer's Disease Detection with Bias Monitoring 

The Alzheimer's disease module integrates both 2D severity classification and 3D volumetric analysis, 

along with bias monitoring. For 2D classification, 33,984 images representing four severity levels were 

used: MildDemented (8,960), ModerateDemented (6,464), NonDemented (9,600), and 

VeryMildDemented (8,960). Three CNN architectures EfficientNet-B4, ResNet-50, and MobileNet-V3 

were systematically evaluated for multi-class severity assessment. 

For 3D volumetric analysis, the OASIS-1 dataset was employed, featuring 436 subjects aged 18–96, 

including 100 Alzheimer's patients. The custom ImprovedSimple3DCNN model processes 32×32×32 

voxel inputs for binary classification based on Clinical Dementia Rating scores. 

Bias detection uses Pearson correlation to evaluate the relationship between predicted dementia 

outcomes and seven demographic/clinical parameters. Real-time monitoring is implemented to flag 

potential bias scenarios, specifically high-confidence predictions (>80%) of dementia in patients over 70 

years old. 

2.5. MS Risk Estimation with Two-Stage Model Architecture 

The multiple sclerosis risk prediction module features an innovative two-stage architecture that separates 

demographic baseline risk from clinical risk modification. The dataset, sourced from Mexico City's 

National Institute of Neurology and Neurosurgery, includes 273 initial patients, of which 177 were 

retained after preprocessing and missing data handling. 

The two-stage design mimics a natural diagnostic process. Stage 1 uses five demographic features (Age, 

Schooling, Gender, Breastfeeding History, Varicella History) to estimate population-level MS risk. 

Stage 2 incorporates clinical diagnostic data, such as symptoms, MRI lesion patterns, cerebrospinal fluid 

markers, and evoked potential results alongside Stage 1 outputs to calculate final, personalized risk 

estimates. 

Both stages use logistic regression, selected for interpretability, probabilistic outputs, and clinical  
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relevance. This architecture enables clear separation of modifiable and non-modifiable risk factors, 

supports interpretable risk decomposition, reduces the dominance of demographic variables, and allows 

detailed SHAP-based attribution at both stages. 

2.6. Explainable AI Integration and Implementation 

SeruNet platform integrates a robust Explainable AI framework that incorporates SHAP and gradient 

saliency methods across all diagnostic modules. Each module applies these techniques in ways 

optimized for its analytic requirements. XRAI improves upon pixel-level attribution by performing 

region-level interpretation using a three-step process: Felzenswalb's graph-based segmentation, 

integrated gradient computation along interpolation paths, and iterative region selection that maximizes 

cumulative attribution gain per area. The implementation uses the Saliency library with customized 

wrappers to ensure precision. Module-specific applications include Brain Tumor 2D and Alzheimer's 2D 

using XRAI for region-based attribution maps; Brain Tumor 3D using Gaussian smoothing on 

segmentation masks; Stroke 2D using XRAI for CT-based classification; and SHAP TreeExplainer used 

for Stroke and LinearExplainer for MS risk prediction. The Alzheimer's 3D model applies gradient 

saliency by backpropagating absolute gradient contributions. 

2.7. Clinical Web Application Development and Deployment 

The clinical deployment framework uses a Gradio-based web application to provide browser-accessible 

diagnostic tools across all modules. SeruNet platform allows simultaneous access to brain tumor 

detection, stroke classification and risk prediction, Alzheimer's assessment with bias monitoring, and 

MS risk estimation, all through standard web browsers, without requiring specialized infrastructure or 

software. The application supports real-time processing with clinically acceptable response times, while 

maintaining consistent user experience. Standardized explainability protocols are applied uniformly 

across all diagnostic modules, making the system viable for immediate use in diverse and under-

resourced healthcare settings. Additionally, the system provides protected data processing and 

role‑based access control to support authorized user access and automatic logging of diagnostic results 

for compliance with medical data privacy policies and support for electronic health records systems. To 

be highly scalable, the system is containerized and deployed on cloud and on‑premise servers and 

supports multi‑user login concurrency and modular APIs to integrate with telemedicine systems and 

hospital information systems. The system supports persistent model monitoring and over‑the‑air 

upgrading to facilitate the integration of the new datasets, so the diagnostics model performance is 

state‑of‑the‑art as the medical imaging technologies and clinical protocols advance. 

 

3. Results  

SeruNet (Smart Explainable Platform for Radiological Understanding) platform demonstrated strong 

performance across all four diagnostic modules. The brain tumor detection component achieved 

exceptional accuracy with the MobileNetV2 model reaching 98.09% accuracy for 2D multi-class 

classification across glioma, meningioma, pituitary tumor, and no tumor categories. The 3D 

segmentation component achieved approximately 70.57% mean Dice similarity coefficient, while the 

downstream MLP binary classifier reached 100% accuracy for tumor presence detection. XRAI 

explainability analysis consistently highlighted anatomically relevant regions corresponding to tumor 

locations across all test cases, providing clinically meaningful visualizations for diagnostic 

interpretation. 

The stroke detection and risk prediction module demonstrated robust performance across both 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR250452891 Volume 7, Issue 4, July-August 2025 7 

 

classification and risk assessment tasks. The ResNet-18 model achieved 95% accuracy for stroke 

classification, with class-specific performance showing 96% precision for hemorrhagic stroke detection, 

86% precision for ischemic stroke identification, and 98% precision for normal case classification. The 

risk prediction component demonstrated exceptional performance with XGBoost achieving 98.99% 

accuracy, 99.18% precision, 98.06% recall, and 99.95% ROC-AUC across 35,000 patient records. 

Alzheimer's disease assessment yielded strong results across both 2D and 3D analysis approaches. For 

2D severity classification, MobileNet-V3 achieved the highest performance with 99.18% accuracy, 

outperforming EfficientNet-B4 at 98.23% and ResNet-50 at 98.04%. The 3D binary classification model 

achieved 69.7% accuracy with 0.866 AUC, optimized for clinical screening applications with 97% 

precision for healthy class identification and 94% recall for dementia detection. Bias monitoring analysis 

revealed strong age correlation at 0.842, necessitating real-time alerting mechanisms for elderly patient 

assessments to ensure diagnostic transparency. 

The multiple sclerosis risk prediction module demonstrated superior performance through its innovative 

two-stage architecture. The system achieved 0.909 ROC-AUC, substantially outperforming single-stage 

approaches and traditional machine learning methods. Stage 1 demographic baseline modeling achieved 

0.659 AUC, while Stage 2 clinical integration elevated overall performance to 0.909 AUC, representing 

a 0.250 improvement attributed to clinical feature incorporation and architectural innovation. 

 

4. Conclusion 

This research demonstrates that SeruNet (Smart Explainable platform for Radiological Understanding) 

platform can provide comprehensive neurological diagnostic capabilities across multiple conditions 

within a single, accessible system. The integration of XRAI for clinical imaging, combined with bias-

aware monitoring systems, establishes a framework for transparent and responsible AI deployment in 

healthcare applications. Web-based architecture eliminates traditional infrastructure barriers, enabling 

advanced diagnostic capabilities regardless of geographic location or available computational resources. 

The unified design approach reduces implementation complexity while maintaining specialized 

diagnostic accuracy through condition-specific expert systems. This work addresses fundamental 

limitations in current neurological AI systems including fragmentation, lack of interpretability, 

infrastructure dependence, absence of bias detection, and poor clinical integration. 

Detailed methodology, comprehensive experimental results, and statistical validation for each 

neurological disorder have been completed as separate specialized studies and will be published as 

forthcoming papers. Future directions include expansion to neurological conditions, integration of 

multimodal data sources, enhancement of bias detection capabilities across broader demographic 

parameters, and development of clinical decision support protocols for diverse healthcare environments. 

SeruNet platform's modular architecture supports systematic scaling to include neurological diagnostic 

capabilities while maintaining the principles of accessibility, interpretability, and clinical utility. 
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