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ABSTRACT 

In the rapidly advancing field of artificial intelligence (AI), Federated Learning (FL) is a distributed 

learning enhanced to preserve the privacy of individual’s data. FL models often captures boarder patterns 

and generalize well across user groups by learning from diverse and decentralized data sources.  FL also 

supports on-device learning updates for enabling real-time personalization in dynamic environments. 

Despite its advantages, FL faces key challenges like difficulty in handling Non-Independent and 

Identically Distributed (Non-IID) client data, communication overhead, slow convergence, data 

heterogeneity and potential security and privacy risks during model updates. To solve this, Machine 

Learning (ML) and Deep Learning (DL) models are integrated within the FL model. ML models are 

lightweight and less computational demanding, making them suitable for resource-constrained 

environments. But, ML models often fails to capture complex patterns especially when dealing with high-

dimensional or unstructured data. In contrast, DL models are capable of extracting complex features and 

patterns making them more suitable for FL settings for various application applications like healthcare 

diagnostic, Internet of Things (IoT) security and financial anomaly prediction. By leveraging the strengths 

of DL, FL systems can achieve improved performance and provides more effective learning across diverse 

and distributed environments. This paper presents a detailed review of various FL-DL frameworks 

developed for predictive modeling across various domains. Initially, several federated systems proposed 

by researchers integrating DL algorithms are briefly studied and analyzed. A comparative evaluation is 

then conducted to understand the drawbacks of those algorithms and suggest a new solution for better 

decision making in real-time, distributed and privacy-sensitive environments. 

 

Keywords: Artificial Intelligence, Federated Learning, Machine Learning, Deep Learning, Dynamic 

Environments 

 

1. INTRODUCTION 

Federated learning (FL) is a machine learning approach in which numerous devices or entities train a 

model together without explicitly exchanging raw data [1]. In FL, users train the model locally on their 

own data and then send model updates or parameters to a central server, which combines them to enhance 

the global model.  This technique helps to protect data privacy and security by keeping sensitive data 

locally [2]. FL is a decentralized approach in terms of training data and on-device processing of 

computations dedicated to train a model [3]. In FL, raw data is kept on end user devices, which cooperate 
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on training a joint model. On a central server, only locally computed updates and analysis results are 

received and aggregated for an enhanced global model benefiting from the distributed learning. The new 

model is then shared with the clients to share knowledge among them [4]. Figure 1 depicts the structure 

of federated learning 

 

 
Figure 1 Overview of Federated Learning System 

 

1.1 FL types based on Data Distribution 

FL can be broadly categorized into three main types based on data distribution like Horizontal FL (HFL), 

Vertical FL (VFL) and Federated TL (FTL) [5]. These categories reflect how data is distributed across 

different clients or parties involved in the learning process. 

• Horizontal Federated Learning (HFL):  In HFL, datasets from different clients share the same 

feature space but have different sample IDs. Each client possesses a subset of the overall population, 

with the same features but different individuals or records. For example, multiple hospitals might have 

data on different sets of patients but with the same set of medical records like lab results. 

• Vertical Federated Learning (VFL): VFL is used when datasets share the same sample IDs but have 

different feature spaces. This implies that clients have data on the same individuals or entities, but with 

different attributes or features. For example, a bank and a credit bureau might collaborate using VFL, 

where the bank has customer transaction data and the bureau has credit history information, both 

pertaining to the same customers. 

• Federated Transfer Learning (FTL): FTL applies when datasets across clients differ in both features 

and samples. FTL leverages transfer learning techniques to enable knowledge sharing between 

domains with little or no overlap in data. For example, if two hospitals have data on different diseases 

with little overlap in patients or features, FTL could be used to transfer knowledge about one disease 

to improve diagnosis of the other. 
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Figure 2 Working Design of FL types based on Data Distribution 

 

1.2 System Architecture in Federated Learning 

They are 3 types of system architecture involved in federated learning 

1. Centralized Architecture: In centralized federated learning [6], a central server orchestrates the 

training process. Clients perform local model training on their data and send the model updates to the 

server. The server aggregates these updates to form a global model and sends it back to the clients. This 

setup is easier to manage and scales well but has a single point of failure. It is commonly used in real-

world applications like mobile keyboards and healthcare. 

2. Distributed (Decentralized) Architecture: Distributed FL [7] eliminates the need for a central server 

by allowing clients to share updates directly with one another in a peer-to-peer manner. Clients collaborate 

using consensus protocols or gossip-based communication to update and refine the global model. This 

approach is more robust and privacy-preserving but harder to coordinate. It is useful in scenarios where 

central coordination is not feasible. Training may take longer due to network delays and synchronization 

issues. 

3. Hybrid Architecture: Hybrid FL [8] combines aspects of both centralized and distributed architectures. 

It may involve multiple central servers coordinating with clusters of clients or partial peer-to-peer 

communication among clients within a centralized setup. This model balances scalability, reliability, and 

privacy. Hybrid setups are particularly useful in large-scale or hierarchical networks, like edge-cloud 

systems. They offer flexibility in design and can be adapted to varying network and device conditions. 

1.3 Strategies Involved in FL 

In FL, multiple parties can collaborate without sharing raw data. Each party shares model updates with a 

central server. The data undergoes aggregation by the central server and are sent to local sources [9]. In 

this way, the model is trained while benefiting all parties by providing privacy.  Distributing the data 

across different devices is more convenient than gathering all the data in one location or device. To achieve 

this, a variety of federated learning strategies [10] have been developed which are listed below 

Federated Averaging (FedAvg): A basic FL method where clients train local models and the server 

averages their parameters. It ensures data privacy, lowers communication costs, and scales well for large 

networks. 

FedAdam: An FL variant of the Adam optimizer that combines adaptive learning rates with momentum. 

It improves convergence on non-Independent and Identically Distributed (IID) data by adjusting updates 

based on gradient history. 

FedYogi: Based on the Yogi optimizer, it stabilizes FL training on heterogeneous data by conservatively 

adjusting learning rates, preventing aggressive updates and model divergence. 
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FedAdagrad: Uses the Adagrad optimizer in FL to adapt learning rates per parameter. It improves 

convergence by giving smaller updates to frequent features and larger ones to infrequent ones. 

FedNova: Normalizes client updates to correct for client-side heterogeneity in data and computation, 

preventing bias from unbalanced local training. 

FedProx: Enhances FedAvg by adding a regularization term to reduce local model divergence. It 

improves training stability in settings with highly non-IID client data. 

Scaffold: Corrects client drift using control variates and server-side updates. It improves convergence and 

reduces communication rounds, especially under non-IID data conditions. 

1.4 Applications 

FL is gaining traction across various industrial application where data privacy, security and 

decentralization are crucial [11]. Some of those application are listed below 

• In healthcare, FL enables hospitals to collaboratively train models for disease diagnosis or drug 

discovery without sharing sensitive patient data. 

• In the financial sector, banks and institutions use FL to detect fraud or assess credit risk while 

preserving user confidentiality. 

• Mobile and IoT devices (e.g., smartphones, wearables) use FL to personalize services like voice 

recognition, keyboard suggestions, and activity tracking without uploading private user data to the 

cloud. 

• In smart manufacturing and edge computing, FL supports predictive maintenance and quality 

control by learning from data across multiple distributed machines. 

• An autonomous vehicles use FL to share insights from real-world driving experiences across fleets, 

improving safety and decision-making while keeping raw sensor data local. 

1.5 Advantages 

FL allows model training directly on devices where data is generated, which enhances data privacy by 

ensuring that raw data never leaves the local device. This makes FL especially suitable for industries with 

sensitive information, such as healthcare or finance. It also reduces network bandwidth usage, since only 

model updates (like gradients or weights) are communicated instead of full datasets. Furthermore, FL 

enables personalized models tailored to individual users without compromising their privacy. It supports 

real-time learning as new data is continuously generated on edge devices and is highly scalable, operating 

efficiently across thousands or even millions of distributed clients. 

1.6 Disadvantages 

The key issue in FL is non-IID data, where client data distributions vary significantly, leading to poor 

model performance; this can be addressed using meta-learning, domain adaptation, or personalized FL 

approaches. Another challenge is unreliable or slow clients, which can disrupt training solvable through 

asynchronous updates and smart client selection. Communication overhead from frequent model updates 

can be reduced using model compression, quantization, or adaptive update strategies. Although raw data 

isn't shared, gradients may still leak private information, which can be protected using techniques like 

differential privacy, secure multiparty computation, or homomorphic encryption. Additionally, FL is 

vulnerable to malicious participants who may send corrupted or poisoned updates, potentially degrading 

the performance of the global model or causing it to behave incorrectly. Lastly, as user behavior changes 

over time, models may become outdated a problem that can be handled using continual and online learning 

methods that adapt the model to evolving data patterns. 
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1.7 Artificial Intelligence in Federated Learning 

Artificial Intelligence (AI) refers to the ability of machines or systems to mimic human intelligence by 

learning from data and making decisions or predictions [12]. In the context of FL, AI plays a crucial role 

in enabling smart, secure, and efficient training of models across distributed clients without compromising 

user privacy [13]. AI techniques allow FL systems to handle complex tasks such as intelligent client 

selection, adaptive model training, and anomaly detection [14]. AI composed of two subsections i.e., 

Machine Learning (ML) and Deep Learning (DL). 

Machine Learning (ML) is one of the most commonly applied methods in FL. ML algorithms in FL allow 

devices to collaboratively train models on local data and share only model updates with a central server 

[15]. ML models collaboratively train systems without sharing raw data. Some ML models include 

Logistic Regression (LR), Support Vector Machines (SVMs), K-Nearest Neighbors (KNN) and Random 

Forest (RF). These models are widely applied in FL for classification and regression tasks, offering 

simplicity and effectiveness on structured data while preserving data privacy across distributed clients 

[16]. FL can also incorporate Reinforcement Learning models, such as Q-Learning and Policy Gradient 

Methods, to optimize decision-making in dynamic environments [17]. However, traditional ML 

techniques often struggle with challenges like non-IID data, limited feature representation, and the 

inability to generalize well in heterogeneous environments. When integrated with FL, these models also 

face issues such as increased communication overhead, difficulty in handling asynchronous client updates 

and reduced performance due to limited local data on each client. Figure 3 depicts the integration of FL 

with DL model. 

DL models like Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs) and their 

variants like Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU) are well-suited for 

sequential and time-series data across distributed clients. These models enable decentralized training on 

complex data while preserving user privacy [20]. Transformer-based models have also been adopted in 

FL settings for natural language tasks, as they support parallel processing and perform well even in non-

IID and resource-constrained environments commonly found in federated systems [21]. Despite being 

computationally intensive, DL models integrated with FL enable powerful, privacy-preserving AI 

applications across domains such as healthcare, finance, smart homes, and autonomous systems [22]. 
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Figure 3 Training Workflow: Federated Learning with Deep Learning 

 

In this paper, a comprehensive overview of the state-of-the-art FL methods integrated with DL models are 

illustrated for various applications. By categorizing and analyzing existing approaches, this study 

highlights their strengths and limitations, providing valuable insights into the current state of the field. 

The remaining parts are organized in the following manner: Section II provides a survey of various papers 

related to FL integrated with DL algorithms designed for different environments, focusing on their 

methodologies and applications. Section III presents a comparison of these survey papers, highlighting 

their strengths, weaknesses and differences. Section IV evaluates the performance of the discussed 
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approaches, analyzing key performance metrics and their impact on system efficiency. Section V 

concludes the survey by summarizing the key findings and proposing potential future directions for 

research in this area. 

 

2. SURVEY ON FEDERATED LEARNING WITH  DEEP LEARNING MODEL FOR VARIOUS 

APLICATIONS 

Reddy et al. [23] developed a Jellyfish Namib Beetle Optimization Algorithm-SpinalNet (JNBO-

SpinalNet) with FL for fraudulent credit card transaction detection. The input data was pre-processed 

using quantile normalization and the features were selected using various distance measures. The selected 

features were augmented using Bootstrapping method and SpinalNet is finally allowed to detect credit 

card frauds. The hyper-parameter of SpinalNet was optimized by JNBO model for credit card transaction 

fraudulent detection. FL was incorporated to ensure privacy-preserving, decentralized training across 

multiple financial institutions. 

Guo & Jiang, [24] presented a weakly supervised anomaly detection with privacy preservation called bi-

level federated learning framework (BFL). Initially, a Pairwise Relation prediction-based Ordinal 

Regression Network (PRO) was employed to train a Deep Anomaly Detection (DAD) model within a 

Federated Learning (FL) framework. The model detected anomalies with minimal labels, which were 

manually categorized and combined with normal data to train a multi-class defect classifier under the same 

FL setup. The BFL framework enables accurate defect classification while preserving data privacy. 

Sikandar et al. [25] developed generative AI and FL for privacy preserved sequence-based stomach 

adenocarcinoma detection. In this model, amino acid sequences altered by STAD were used as input, and 

features were extracted using Electro-Ion Interaction Pseudopotential (EIIP) values and Kidera factors. To 

address class imbalance, generative AI was employed to create synthetic data samples. The federated 

artificial neural network (Fed_ANN11) was used to ensure the data privacy while achieving high 

diagnostic accuracy particularly with EIIP-based features. 

Abbas et al. [26] presented a federated DL (FDL) framework using deep neural network (DNN) to predict 

thermal comfort in smart buildings. The model allows clients (e.g., smart devices) to train locally on 

private data while only sharing model updates, thus preserving user privacy. The min-max normalization 

and Synthetic Minority Over-Sampling Technique (SMOTE) were integrated to balance and prepare the 

dataset before training. The horizontal FL architecture were used to ensure data confidentiality across 

distributed clients. This system supports energy-efficient HVAC control and occupant comfort prediction 

in privacy-sensitive building environments. 

Chawla et al. [27] constructed a lightweight and privacy-preserved FL framework for classifying emotions 

from verbal communication. Mel-Frequency Cepstral Coefficients (MFCC) was used to extract features 

from audio data and trains a Bidirectional Long Short-Term Memory (Bi-LSTM) model locally on edge 

devices, ensuring user data privacy. This FL system was designed to handle both Independent and 

Identically Distributed (IID) and non-IID datasets making it robust across diverse data sources. The 

approach ensures secure emotion recognition for social communication deficits, aiding mental health, 

assistive tools and private customer interactions. 

Bhavsar et al. [28] introduced a federated learning-based intrusion detection system (FL-IDS) to enhance 

the vehicular network security in Internet of Things (IoT) edge device implementations. The FL-IDS 

system protects data privacy by using local learning in which devices share only model updates with an 
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aggregation server. Logistic Regression (LR) and Pearson Correlation Coefficient (CNN) was performed 

for IDS to prevent attacks in transportation IoT environments. 

Sarker et al. [29] presented an optimized Attention-based One-Dimensional Convolutional Neural 

Network - Gated Recurrent Unit model (Att-1D-CNN-GRU) with FL for secure and effective load 

forecasting in smart grid systems. An attention-based 1D-CNN-GRU model was performed to capture the 

temporal patterns from the time-series data. The hyperparameters were optimized by particle swarm 

optimization (PSO) algorithm that improves the convergence in model training. Moreover, the explainable 

AI (XAI) technique was applied using Shapley Additive explanations (SHAP) to interpret the model 

prediction providing the feature ranking based on their prediction score. 

Huang et al. [30] proposed a novel IDS called DVACNN-Fed which integrates Deep Variational 

Autoencoders (DVAE) and Convolutional Neural Networks (CNN) with attention mechanisms within a 

FL architecture. The DVAE enhances privacy by encoding data before transmission, while the CNN-

attention hybrid improves anomaly detection accuracy. This decentralized training method allows multiple 

Industrial IoT (IIoT) devices to collaboratively build a strong intrusion detection model without exposing 

raw data. The model also incorporates differential privacy and data augmentation techniques to boost 

robustness and generalization. 

Nobakht et al. [31] suggested a secure IoT malware detection model with FL model (SIM-FED). The SIM-

FED offers a privacy-preserving solution for IoT malware detection, without sharing data and enhancing 

security in distributed environments. The model utilizes a lightweight one-dimensional CNN to reduce 

preprocessing time and computational overhead, enabling automatic feature extraction. Furthermore, Grid 

search was used to optimize the CNN parameter for efficient malware prediction in IoT. 

Olanrewaju-George et al. [32] presented Federated learning-based intrusion detection system (FL-IDS) 

for the Internet of Things (IoT) using unsupervised and supervised deep learning models. This model 

specifically utilizes Deep Auto Encoder (DAE) as the unsupervised model to detect anomalies and Deep 

Neural Network (DNN) as the supervised model for attack classification. These models were trained 

locally on individual IoT devices using the FedAvgM model, which preserves the data privacy while 

enabling the collaborative learning for best IDS performance. 

Albogami, [33] developed an Intelligent Deep Federated Learning Model for Enhancing Security 

(IDFLM-ES) strategy for IoT-enabled edge computing. Federated hybrid deep belief network (FHDBN) 

model was applied in FL to analyze the time series data generated by IoT edge devices. Data normalization 

and golden jackal optimization (GJO) was employed for feature selection. This model learns individual 

and distributed feature representations over distributed databases to improve model convergence.  Finally, 

the dung beetle optimizer (DBO) model was used to choose the optimal hyperparameter for the FHDBN 

model. 

Çıplak et al. [34] suggested a FL-based malware detection and classification using DNN algorithms called 

FEDetect. The collected dataset was pre-processed to create separate dataset versions for binary and 

multiclass classification. Feedforward Neural Networks (FNN) and Long Short-Term Memory networks 

(LSTM) were applied for both classification types. Federated and non-federated versions were developed 

with total 22 base models with additional variants for testing. Model aggregation in the FL setup used the 

FedAvg algorithm with the Adam optimizer to suit low-power devices. 

Zhang et al. [35] presented a Differential Privacy based FL algorithm with Clustered Model Random 

Selection (DPFedCMRS) for privacy preserving data. This model first groups clients based on similar data 

distributions. In order to address data heterogeneity, each cluster then selects a model at random from 
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other clusters during the iteration to learn the properties of various data distributions. To achieve sample-

level differential privacy and safeguard the client's data privacy, the algorithm was subjected to differential 

privacy. An adaptive clustering algorithm (ACA) incorporates gradient quantile smartification (GQS) to 

guarantee high-accuracy clustering results while preserving high privacy. 

Yang et al. [36] presented a clustering-based federated deep learning (Clu-FDL) model for personalized 

glucose prediction in diabetes management. This model utilizes Simple Recurrent Neural Network 

(SimpleRNN) and Gated Recurrent Units (GRU) to capture temporal patterns in patient glucose data. The 

integration combines clustering patients according to their intake of carbohydrates (CHO) with FL which 

protects data privacy by training models on local devices. For every patient group, this aids in producing 

more precise and customized predictions. 

Li et al. [37] developed a Split Federated Learning (SFL) framework that synergistically integrates FL and 

split learning (SL) for enhancing cancer detection capabilities in medical consumer electronics. The SFL 

framework introduces a novel hybrid architecture where DL models were partitioned between client-side 

and server-side components. This model enabling efficient local feature extraction while preserving data 

privacy through secure and encrypted intermediate feature transmission for enhancing cancer detection. 

Onaizah et al. [38] developed Siamese Convolutional Neural Network (SiCNN) in a peer-to-peer FL 

approach (FL-SiCNN) to improved brain tumor diagnosis. The SiCNN was used to improve the feature 

extraction and classification of brain tumor using paired medical images. The peer-to-peer FL approach 

(P2P-FL) approach ensured data security and privacy making it a privacy–preserving automated medical 

diagnosis solutions in collaborative healthcare settings. 

Basnin et al. [39] integrated CNN, Belief Rule Base (BRB) system and FL models to improve the 

Alzheimer’s disease prediction. In this model, modified CNN was used to process the MRI images for 

initial disease stage classification. These CNN outputs were than integrated with demographic data and 

passed into BRB system for handling uncertainty. This system works under Horizontal FL (HoFL) design 

to secure data privacy across multiple clients like hospitals.  Moreover, Particle Swarm Optimization 

(PSO) was used to BRB parameters for enabling uncertainty-aware diagnosis of Alzheimer’s Disease in 

multi-modal healthcare data. 

Table 1 provides the comparison of various FL with DL models across different applications. 

 

Table 1 Comparison of various FL with DL models across different applications 

Ref 

No 

Techniques 

Used 

Advantage Disadvantage Dataset Performance 

Evaluation 

[23] FL, JNBO, 

SpinalNet 

Ensures secure 

collaboration 

between banks 

without data 

sharing, well 

optimized 

parameters 

Low model 

interpretability, 

complex 

architecture harder 

to analysis 

Private credit 

card transaction 

dataset 

Accuracy = 

89.10%; 

Mean Square 

Error (MSE) = 

28.68% 

[24] FL, DAD,  PRO Preserves data 

privacy across 

clients, Works 

Manual labeling 

still required for 

defect types,  

Higher 

Industrial data 

from pre-baked 

carbon anodes 

(real-world case 

Accuracy= 

94.2% 

Precision= 

91.3% 
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with weak and 

limited labels 

computational 

complexity due to 

two-stage training 

study); data not 

directly shared 

due to privacy 

constraints 

Recall = 

90.3% 

[25] Generative AI, 

FL, EIIP, 

Fed_ANN11 

Ensures data 

privacy by 

avoiding data 

centralization 

through FL, 

Effectively 

handles class 

imbalance 

System 

heterogeneity and 

communication 

overhead 

Genomic data 

from patients 

with Stomach 

Adenocarcinoma 

(STAD) 

Training 

Accuracy = 

99%, Testing 

Accuracy = 

94% 

[26] FDL, DNN, 

SMOTE, Max 

Normalization 

Reduces 

overfitting by 

decentralized 

training, 

Supports scalable  

training across 

devices 

Slower model 

convergence, 

Communication 

between clients and 

server can increase 

latency and 

complexity. 

ASHRAE RP-

884 dataset with 

records, 56 

features thermal 

comfort votes 

environmental 

conditions 

Overall 

Accuracy: 

82.40% 

Client 1 

Accuracy: 

85% 

Client 2 

Accuracy: 

83% 

[27] MFCC, FL, Bi-

LSTMS 

Handles diverse 

and imbalanced 

audio emotion 

data effectively 

across multiple 

sources. 

Ineffective 

synchronization 

and coordination 

between clients and 

server during 

training 

RAVDESS, 

CREMA, TESS, 

SAVEE 

with Happy, Sad, 

Angry, Neutral of 

668,376 samples 

Validation 

Accuracy = 

99.97%; 

Precision: 

99.97%; 

Recall: 

99.97% 

[28] FL, LR, PCC 

CNN 

Effective attack 

prediction, works 

efficiently on 

larger dataset 

Works on 

imbalanced data 

high processing 

time,  slightly 

overfitting issues 

NSL-KDD and 

Car-Hacking 

dataset 

Accuracy 

(LR) = 94%; 

Accuracy 

(CNN) = 99% 

[29] attention-based 

1D-CNN-GRU, 

PSO, XAI, 

SHAP 

captures complex 

temporal-spatial 

patterns in 

electricity data, 

improved 

interpretability 

Pruning and multi-

component 

optimization 

increase system 

design complexity 

Panama Case 

Study data, 

Victoria State 

Electricity 

Dataset 

Australian Load 

Dataset, 

Household 

Electric Power 

RMSE 

(Victoria 

State) = 0.18 

RMSE 

(Household) = 

1.05 

RMSE 

(Australian 

Load) 39.23 
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Consumption 

Dataset 

RMSE 

(Panama) = 

117.88 

[30] DVAE, CNN, 

Attention 

Mechanism, 

FL 

Combines 

feature-rich 

learning with 

strong privacy 

protection, 

enabling secure 

IDS across 

distributed IIoT 

devices. 

High model 

complexity and 

communication 

overhead can make 

real-time 

deployment on 

limited-resource 

IIoT devices 

challenging. 

Telemetry 

Operation and 

Network dataset 

for IoT (TON-

IoT) and  Botnet 

IoT (BoT-IoT) 

dataset 

Accuracy 

(TON-IoT) = 

96.51%; 

Accuracy 

(BOT-IoT) =  

99.35%; 

[31] 1D-CNN, FL Reduced 

preprocessing 

time and low 

computational 

overhead 

Susceptible to 

communication 

delays and 

synchronization 

issues 

IoT-23 dataset Accuracy = 

99.52% 

[32] FL-IDS, IoT, 

DAE, DNN and 

FedAvgM 

Lower False 

Positive Rates 

(FPR),  captures 

local anomaly 

patterns, better 

data distributions 

High 

communication 

costs, challenge in 

identifying non-

identical data 

affects 

convergence 

N-BaIoT (9 IoT 

devices, 10 attack 

classes) 

Accuracy = 

90.39%; 

Precision = 

99.99%; 

Recall = 

90.10% 

[33] FL, FHDBN, 

GJO, DBO, IoT 

Privacy 

preserving, 

improved 

accuracy, low 

data transfer 

Not scalable in real 

time, potential 

computational 

cost, limited to 

specific attacks 

Edge-IIoTset 

dataset (15,000 

samples, 

15 attack classes) 

Accuracy = 

98.24%; 

Precision = 

86.79%; 

Recall = 

86.78% 

[34] FL, FNN, 

LSTM 

Avoids the risks 

of data breaches, 

lightweight 

models with 

limited 

computing power 

Longer training 

time, Actual 

network 

communication 

between devices 

were not tested 

properly 

CIC-MalMem-

2022 dataset 

Accuracy 

(Binary 

classification) 

= 99.99%; 

Accuracy 

(Multi 

classification ) 

= 84.5% 

[35] Differential 

privacy, ACA, 

GQS 

Eliminates the 

data leak risk 

from the central 

database, works 

Lower 

computation and 

communication 

overhead, 

Complex model 

MNIST, 

FMNIST and 

CIFAR10 

Accuracy 

(MNIST) = 

93.45%; 

Accuracy 

(FMNIST) = 
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well on large 

users 

syncing,  cache 

overhead 

82.36%; 

Accuracy 

(CIFAR10) = 

65.71% 

[36] SimpleRNN, 

GRU, FL 

Easy new patients 

adaptability,  

well-suited for 

diverse and 

privacy- sensitive 

healthcare 

applications. 

Challenged 

computational 

demands on edge 

devices with 

limited resource-

limited settings. 

UVA/Padova 

Type 1 Diabetes 

Simulator 

(Python version 

by Xie) with 

30 virtual 

patients: 10 each 

from adult, 

adolescentand 

child groups 

Precision = 

93%; 

Recall = 96%; 

F1-score = 

95% 

[37] FL, SL, DL Strong data 

privacy,  

Efficient local 

processing, high 

adapa ability on 

local devices 

High latency 

demands and 

maintenance 

complexity, High 

security risks in 

transmission 

BreakHis dataset Accuracy = 

93.1% 

[38] FL, SiCNN, 

P2P-FL 

Highly suitable 

for decentralized 

environments, 

ensures data 

privacy 

Difficult in 

handling larger 

datasets, more 

complex,  multi-

class 

classifications 

MRI dataset by 

cheng et al. [40] 

Accuracy = 

97.11%; 

Precision = 

96.03%; 

Recall =  

95.89% 

[39] CNN, BRB, FL, 

PSO 

Effectively 

handling 

multimodal data 

(image 

+demographics) 

and uncertainty, 

tested with 

multiple clients 

Limited data 

interpretability,  

needs to improve in 

parameter 

optimization, 

adequate error rate 

Alzheimer’s 

Disease 

Neurology 

Initiative (ADNI) 

and NIfTI files 

dataset 

Accuracy 

(CNN) = 98% 

Accuracy 

(FL) = 99.9% 

 

3. RESULT AND DISCUSSION 

In this section, the performance analysis of the FL combined with DL techniques, as presented in Table 1 

underscores their effectiveness across a wide spectrum of application domains like healthcare diagnostics, 

financial fraud detection, IoT security, smart energy systems and more. The models were evaluated using 

diverse datasets some publicly available, capturing a range of real-world environments and data 

distribution scenarios. This section offers a comparative evaluation of these FL-DL approaches, focusing 

primarily on their classification accuracy and demonstrating how these integrated models perform under 

different conditions and use cases. 
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Figure 4 Graphical analysis of various FL with DL models for various application 

 

Figure 4 depicts the graphical representation of different FL with DL based models for different 

application domains using the accuracy metric. Among the compared models, FEDetect (Binary) [34], 

HoFL [39] and SIM-FED [31] achieves highest accuracy of 99.99%, 99.9% and 99.52% respectively. 

The FEDetect model [34] is a federated malware detection framework utilizing deep neural networks, 

where both binary and multiclass versions were trained using FNN and LSTM networks. It employs the 

FedAvg aggregation strategy along with the Adam optimizer to support low-power devices. This model 

effectively avoids the risk of data breaches and is well-suited for environments requiring lightweight 

computational models. The HoFL model [39] integrates CNN, BRB and Federated Learning to enhance 

Alzheimer’s disease prediction. This model is particularly effective in handling multimodal data and 

managing uncertainty, making it suitable for deployment across multiple healthcare institutions. The SIM-

FED model [31] provides a secure solution for IoT malware detection through a lightweight 1D-CNN 

architecture optimized via grid search. It significantly reduces preprocessing time and minimizes 
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computational overhead, making it an efficient and privacy-preserving approach for resource-constrained 

IoT environments. 

Despite their advantages, these top-performing models also exhibit certain limitations. For instances, 

FEDetect model suffers from longer training times and lacks proper validation of real-world network 

communication between devices. Similarly, the HoFL model faces challenges related to limited 

interpretability of data, suboptimal parameter tuning, and a non-negligible error rate. The SIM-FED model 

is susceptible to communication delays and synchronization issues during deployment in distributed 

environments. 

Thus, the limitations of these future models will be resolved in the future proposed models by developing 

an advanced and lightweight federated architectures integrated with DL models.  The future model will 

emphasize efficient training techniques like model compression, adaptive federated optimizations and 

synchronous update mechanisms which collectively aims to improve scalability and reduce computational 

overhead. Also, in order to improve the interpretability, future model may incorporate attention models or 

transformers within FL models enabling the good decision making. Synchronization issues will be 

addressed by adopting the flexible communication strategies like client selection policies or asynchronous 

FL architectures. 

Also, future research will explore the integration of multimodal data sources like sensor data, medical data 

and network traffic within FL-DL models for secure and collaborative learning. This approaches will 

enable more efficient learning across various different like IoT security, health care diagnosis, banking 

sector, government and financial fraud prediction. Also, these architectural improvements will aim to 

enhance scalability and make the models better suited for real-time, privacy preserving and distributed 

environments across diverse application domains. 

 

4. CONCLUSION 

FL combined with ML and DL models have shown great promise across various application domains like 

diagnostics, IoT security and financial anomaly detection. Compared to ML models, DL models results in 

superior performance in handling complex, high-dimensional and unstructured data. This paper presents 

a comphrensive review of FL-DL based models, analyzing the techniques used, their advantage and 

disadvantage, dataset types and performance evaluation. This study provides a valuable insight for 

researchers aiming to develop robust and secure predictive models in real-time deployment in distributed 

environments on various domains. Future work will focus on designing an advanced and lightweight FL-

DL architectures to improve scalability, reduce computational complexity and resolve the synchronization 

issues in distributed systems. Efforts will also focus on improving the models interpretability in enabling 

efficient real-time deployment in various application domains. 
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