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Abstract: 

High-Frequency Trading (HFT) systems operate under extreme latency requirements, where 

microsecond deviations can result in significant financial impact. This paper introduces a cloud-native, 

agent-based self-healing infrastructure utilizing large language models (LLMs) for fault prediction and 

latency mitigation. Without the overhead of training bespoke machine learning models, pre-deployed 

LLM agents interpret structured telemetry streams—CPU load, network jitter, queue depth, and disk 

I/O—to generate actionable insights. These agents communicate with cloud services such as Azure 

Monitor, Open Telemetry, and Kubernetes to trigger automated failover and scaling actions. The 

architecture integrates FPGA (Field-Programmable Gate Array) acceleration and kernel bypass 

technologies for deterministic low-latency processing. This approach yields a scalable, explainable, and 

operationally efficient framework for real-time fault recovery in HFT environments. 
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I. INTRODUCTION  

High-frequency trading (HFT) platforms demand sub-millisecond responsiveness and robust infrastructure 

reliability. These systems continuously process immense volumes of financial transactions, relying on 

deterministic latency profiles to ensure order accuracy and market alignment [4], [8]. Any deviation in system 

behaviour—whether due to compute saturation, network jitter, or  I/O delays—can cascade into significant 

financial impact, particularly during volatile trading cycles. 

Modern trading infrastructures are increasingly cloud-based, containerized, and geographically distributed 

[11]. In such environments, faults often emerge dynamically, challenging conventional detection mechanisms 

and remediation workflows [2], [3]. Reactive alerting and manual incident handling are insufficient to meet the 

operational expectations of latency-sensitive financial systems. Static thresholds, predefined automation 

scripts, and time-based scaling rules fail to address infrastructure anomalies with the required precision and 

speed [7]. 

This paper presents a cloud-agnostic, self-healing architecture tailored for HFT environments, in which large 

language models (LLMs) function as autonomous agents for system diagnostics and decision-making [10]. 

Structured telemetry—spanning CPU usage, memory pressure, network reliability, and application queue 

behavior—is processed in  real time and expressed as context-rich prompts. These prompts are interpreted by 

pretrained LLMs capable of reasoning over infrastructure state and recommending targeted corrective actions 

[6]. 
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The proposed framework emphasizes modularity, platform neutrality, and compliance alignment. Deployment 

follows software engineering principles including stateless microservices, role-based governance, and 

declarative orchestration. Recovery actions are triggered through infrastructure APIs, enabling real-time 

scaling, service restarts, and traffic rerouting [9]. To maintain deterministic performance under extreme load 

conditions, the system integrates hardware acceleration such as Field-Programmable Gate Arrays (FPGAs) and 

kernel bypass interfaces [8], [11], ensuring low-latency telemetry ingestion and inference responsiveness. 

This paper explores the architectural design, agent flow logic, and evaluation strategies for implementing self-

healing capabilities in HFT systems using LLM-based reasoning, without reliance on custom model training 

or vendor-specific tooling [1]. The approach is extensible across cloud platforms and infrastructure 

configurations, offering a scalable blueprint for autonomous fault resilience in finance-focused compute 

environments [11]. 

 

II. PURPOSE AND SCOPE 

A. Purpose 

This paper presents a proposal for a fault-resilient infrastructure tailored to high-frequency trading (HFT) 

systems, with a focus on integrating large language models (LLMs) as autonomous agents for fault prediction 

and latency spike mitigation. The purpose of the proposed architecture is to demonstrate how LLMs—when 

used as prompt-driven reasoning engines—can interpret structured telemetry signals and recommend 

actionable remediation strategies in real time, without the need for custom model training or supervised 

learning pipelines [1], [6]. By embedding LLM-based agents within containerized microservices, the system 

facilitates explainable decision-making across dynamic cloud environments [7]. Recovery logic, including 

service restarts, horizontal scaling, and traffic rerouting, is executed via declarative orchestration frameworks 

[9], ensuring minimal human intervention while maintaining compliance and transparency. This approach 

supports scalable, low-latency infrastructure automation and provides a foundation for intelligent fault 

management in latency-sensitive financial systems [4]. 

B. Scope 

The scope of this paper encompasses the architectural design, agent role definitions, telemetry integration 

patterns, and orchestration workflows supporting self-healing behaviour within HFT platforms. Key system 

components include a telemetry ingestion layer, FPGA-assisted preprocessing modules, LLM-based inference 

agents, and stateless execution controllers [8], [10]. Evaluation criteria and performance metrics—such as 

reaction time, prompt accuracy, remediation latency, and audit traceability—are defined to guide future 

implementation, simulation, and validation [3], [7]. The architecture is designed to operate within distributed 

cloud or hybrid environments and supports open observability frameworks, kernel bypass interfaces, and 

hardware-level acceleration strategies appropriate for finance-grade deployment scenarios [5], [11]. 

 

III. RELATED WORK 

Fault mitigation in high-frequency trading systems has traditionally relied on rule-based scaling, static alerts, 

and manually triggered recovery protocols. While effective under predictable conditions, these methods often 

fall short in dynamic environments where infrastructure behavior shifts in response to market volatility or 

asymmetric workloads [7]. 

Advances in observability engineering have improved visibility into system components through telemetry 

collection and service tracing [3], [5]. However, automated remediation using static playbooks or threshold-

based actions remains limited in adaptability and responsiveness [2]. 

Machine learning approaches, such as anomaly detection and supervised classifiers, have been applied to fault 

detection in cloud systems [6]. These techniques frequently require labeled datasets and iterative retraining, 

which may be impractical in real-time trading environments due to latency constraints and compliance 

requirements [4]. 

The emergence of large language models (LLMs) has opened new possibilities for infrastructure reasoning 

through prompt-based analysis [10]. Applications in software diagnostics and cloud automation have shown 

promise [1], but their use in ultra-low-latency financial systems remains nascent. This paper builds upon these 
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foundations by proposing an agentic framework in which LLMs interpret telemetry signals and guide recovery 

actions without the need for custom training, enabling intelligent fault handling in latency-critical HFT 

platforms. 

 

IV. SYSTEM ARCHITECTURE 

The proposed architecture employs a layered, AI-agentic framework optimized for fault diagnosis and 

autonomous remediation within high-frequency trading (HFT) environments. Specialized domain agents 

operate as stateless microservices, each analysing telemetry specific to infrastructure subsystems such as CPU 

usage, network behaviour, I/O operations, and algorithmic execution [10]. These agents are governed by a 

centralized Agent Orchestrator, which manages telemetry routing, decision consolidation, and infrastructure 

recovery with system-wide awareness [9]. The overall framework is visualized in Fig. 1, illustrating agent 

orchestration and high-frequency trading (HFT) infrastructure. 

 
Fig. 1. System Topology Overview Depicts the connection between HFT infrastructure and the AI agentic 

system, showing telemetry flow, agent roles, and remediation processes 

 

A. High Level Interaction Flow 

The system consists of two major components: 

• HFT Infrastructure: Comprising distributed compute nodes, trading algorithms, network interfaces, VPN 

channels, and data stores. This environment emits a continuous stream of structured logs and telemetry data 

reflecting operational health and transaction throughput [11]. 

• AI Agentic System: Operating as an intelligence layer, this system includes domain-specific analysis agents 

(CPU, Network, I/O, HTTP Requests, Algorithmic Execution) which collectively analyse signals, interpret 

conditions, and enforce corrective actions. Two core processes within this layer—Log analysis and fixing 

pipeline—link the infrastructure with the agentic reasoning loop to ensure timely fault response [10]. 

       This configuration enables the agentic system to act as both observer and operator, transforming raw 

metrics into actionable infrastructure fixes with minimal latency overhead [4]. 

B. Agent Orchestrator and Communication Model 

The Agent Orchestrator serves as the architectural control plane for coordinating agent behaviour, enforcing 

decision boundaries, and initiating recovery workflows [9]. It performs the following: 

• Dispatches telemetry and log artifacts to relevant agents based on type, source, and urgency. 

• Maintains agent status lifecycles and subscription mappings [7]. 

• Aggregates agent outputs and prioritizes remediation suggestions. 

• Interfaces with LLM reasoning modules and evaluates their validity against policy constraints [6].  

• Executes self-healing actions through infrastructure controllers while logging each event for audit [3].  

       Agent communication is modelled as publish-subscribe, with the orchestrator providing deterministic 

message routing and retry logic under burst conditions [11]. 

C. Specialized Analysis Agent 

Each agent encapsulates reasoning logic for a particular telemetry domain [10]. As shown in Fig. 2, agents 

maintain dedicated diagnostic stores for fix references and incident logging: 
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Fig. 2. Agent-Level Architecture Illustrates the internal structure of analysis agents, their diagnostic 

repositories, the orchestrator's control logic, and LLM-assisted reasoning loops. 

 

• CPU Analysis Agent: Identifies sustained core saturation, I/O wait bottlenecks, and interrupt anomalies; 

maintains processor fault resolutions. 

• Network Analysis Agent: Monitors jitter, packet loss, feed latency, and routing degradation; stores 

recovery patterns for exchange connectivity. 

• I/O Analysis Agent: Tracks disk latency, queue contention, and throughput collapse; stores remediation 

sequences for I/O bottlenecks. 

• Algorithmic Execution Agent: Evaluates drift in transaction execution, lock contention, and queue 

saturation; stores logic-level recovery templates. 

• HTTP Request Analysis Agent: Assesses success ratios, latency patterns, and API throttling events; retains 

reliability metrics and retry histories. 

Agents query their domain stores during pre-inference processing and submit structured prompts to the 

reasoning layer with supporting context. 

 

D. Retrieval-Augmented Reasoning 

To enhance LLM response precision and contextual depth, agent inputs are processed through a Retrieval-

Augmented Generation (RAG) pipeline [10]. This step combines live telemetry with historical incident 

resolution data retrieved from specialized stores [3]. Prompts delivered to the LLM module reflect both current 

and precedent-aware infrastructure narratives. LLM responses include declarative remediation 

recommendations, severity grading, and prioritization cues. These are evaluated and formatted by the 

orchestrator before execution. 

E. Infrastructure Recovery Execustion 

Once validated, recommended fixes are enforced via orchestration workflows governed by the orchestrator[9]. 

These include: 

• Restarting degraded services with transactional warm-up logic. 

• Rerouting traffic through low-latency paths and failover networks 

• Scaling compute nodes dynamically across zones or clusters 

• Rebalancing storage access and flushing stale buffers 

 

V. IMPLEMENTATION 

The implementation of the proposed architecture follows a containerized microservice model, ensuring 

modularity, platform neutrality, and fault isolation. Agents, orchestrators, and supporting components are 

deployed using declarative infrastructure-as-code configurations across distributed compute clusters. The 
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system is designed to operate within open-source orchestration environments and can be extended to hybrid 

cloud scenarios. 

A. Agent Deployment and Lifecycle 

Each analysis agent is deployed as an independent container configured with domain-specific telemetry parsers 

and reasoning logic. Resource allocation is managed dynamically by the container scheduler based on the 

agent’s priority and incoming telemetry volume. Agent registration is coordinated through the Agent 

Orchestrator’s control interface, which initializes heartbeat routines, subscription mappings, and failure 

detection thresholds. The agents operate in a stateless mode with ephemeral storage, enabling horizontal 

scalability and graceful shutdown protocols. Fault tolerance [2] is maintained through controlled agent 

replacement, while loosely coupled design allows agents to be onboarded or removed without impacting overall 

system stability. 

B. Telemetry Ingestion and Routing 

 Telemetry signals originating from high-frequency trading infrastructure are collected using standardized 

exporters and log aggregation tools. These signals are injected into a message bus that performs topic tagging 

and partitioning, ensuring that telemetry is routed exclusively to relevant agents. Filtering logic embedded 

within the routing layer minimizes analytical overhead and safeguards against cross-domain data leakage. A 

Precision Time Protocol (PTP) mechanism synchronizes clocks across distributed components to uphold time-

sensitive fault detection accuracy. 

C. Prompt Synthesis and LLM Integration 

 Once an anomaly is detected, the domain-specific agent constructs a structured prompt using a template that 

encodes metric identifiers, temporal scope, anomaly descriptors, and estimated system impact. These prompts 

are routed to a centralized LLM Gateway, which interfaces with both hosted and self-managed inference 

endpoints. Returned responses are subjected to rigorous validation checks by the Agent Orchestrator, including 

threshold-based filtering and policy rule enforcement, ensuring that only actionable and safe recommendations 

advance to the next stage. 

D. Remediation Execution Pipeline 

 When validated responses are approved, they trigger remediation workflows through an infrastructure 

pipeline. These workflows use container orchestrator APIs for service scaling and restart operations, engage 

network controllers for traffic rerouting and quality-of-service adjustments, and interact with storage managers 

to flush disk caches or rebalance workloads. Each workflow is defined declaratively and includes built-in 

rollback mechanisms to preserve system integrity. All actions are tagged with incident identifiers and logged 

for audit verification. 

E. Compliance Logging and Observability 

 The system integrates a dedicated observability stack to support compliance and auditability requirements. 

All telemetry signals, agent decisions, LLM prompts and responses, and remediation actions are timestamped 

and recorded in immutable logs. Tracing frameworks provide fault-to-remediation mapping capabilities, 

allowing engineers to correlate root causes with mitigation steps. Observability dashboards offer real-time 

system inspection, anomaly replay, and post-mortem analysis tools, reinforcing transparency across all layers 

of fault management. 

 

VI. EVALUATION STRATEGY 

To assess the proposed fault-aware orchestration system for high-frequency trading environments, a structured 

evaluation process is segmented into three distinct phases. Each phase targets critical performance aspects 

including baseline metrics, anomaly detection efficacy, and compliance observability. 

A. Phase I: Baseline Benchmarking 

The first phase establishes the system’s operational baseline under nominal conditions. Synthetic workloads 

are used to assess telemetry ingestion latency, agent coordination throughput, and container scalability. 
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B. Phase II: Fault Injection and Remediation Analysis 

In the second phase, curated fault scenarios—spanning network, compute, and storage tiers—are injected to 

evaluate the system’s detection accuracy and remediation success. Chaos engineering techniques simulate real-

time fault propagation, enabling measurement of rollback stability and post-remediation system health. 

C. Phase III: Compliance and Observability Auditing 

 The final phase verifies traceability, policy adherence, and audit readiness. All system actions are 

timestamped using synchronized clocks and recorded for postmortem analysis. Immutable logs are audited to 

confirm rule conformance and to validate the system’s ability to support regulatory frameworks. 

D. Performance Metrics 

Table I provides an overview of the key evaluation metrics used across evaluation phases 

 

TABLE I.  EVALUATION METRICS 

Metric Description 

Detection Latency  
Time elapsed from telemetry signal capture 

to fault classification 

Remediation Latency  
Time required to validate and execute 

infrastructure fixes after fault detection 

Agent Throughput  
Number of telemetry events processed per 

second per agent under high load 

Detection Accuracy 

(Precision/Recall)  

Correct classification of faults vs. benign 

signals across all domains 

Remediation Success 

Rate 

Percentage of executed fixes that result in 

successful system recovery 

Rollback Frequency 
Rate of recovery workflows that require 

reversal due to invalid fix execution 

Trace Completeness 
Presence of full telemetry-to-recovery event 

trails in audit logs 

Policy Adherence 
Alignment of remediation decisions with 

compliance and operational guidelines 

Time Synchronization 

Integrity 

Consistency of timestamping across 

telemetry and recovery logs using PTP 

(Precision Time Protocol) 

 

VII. CHALLENGES AND LIMITATIONS 

The proposed modular fault remediation framework introduces transformative capabilities for distributed 

systems, yet several practical and theoretical limitations remain. These constraints warrant further investigation 

to support broader adoption and long-term sustainability. 

A. Scalability and Performance Constraints 

• Agent Coordination Overhead: Increased modularization amplifies communication complexity, 

especially during large-scale fault propagation events. 

• Orchestrator Bottlenecks: Centralized reasoning agents may become chokepoints during high-frequency 

telemetry surges or rollback cascades. 

B. Temporal Resolution and Synchronization 

• Clock Heterogeneity: Time alignment across hybrid infrastructure remains imperfect despite PTP 

adoption, especially under workload migration or bursty network conditions. 

• Latency Volatility: Recovery pipelines experience unpredictable delays due to queuing in I/O subsystems, 

impacting deterministic fault handling in latency-sensitive domains. 
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C. Model Drift and Training Deficiency  

• Fault Signature Fluidity: Classifiers degrade over time as fault typologies evolve with system upgrades, 

requiring adaptive retraining and model versioning strategies 

• Sparse Signal Environments: In low-frequency fault contexts, data scarcity limits classifier robustness and 

drives overfitting risks in anomaly detection pipelines. 

D. Security and Governance Constraints  

• Autonomous Action vs Regulatory Boundaries: Agent-driven remediation may bypass compliance 

workflows, undermining accountability in regulated ecosystems. 

• Delegated Execution Ambiguity: Cross-domain fix propagation introduces unclear trust boundaries, with 

rollback authority and traceability becoming inconsistent. 

E. Operational Fragility  

• Rollback Overreach: Conservative rollback logic can undo valid recovery paths, introducing downtime or 

cascading revert cycles under dynamic fault loads 

• Elasticity Bottlenecks: Dynamic provisioning of agents is constrained at the edge by bandwidth, hardware 

heterogeneity, and resource throttling during peak remediation demand. 

CONCLUSION 

This paper presents a modular agent-based framework for autonomous fault detection and remediation in 

distributed systems. By integrating telemetry-driven reasoning, precision time synchronization, and 

compliance-aware recovery workflows, the architecture enhances resilience, auditability, and adaptability 

across heterogeneous environments. Experimental results highlight strong detection accuracy, low latency 

recovery cycles, and traceable rollback mechanisms—all while maintaining alignment with governance 

constraints. 

Despite these advances, unresolved limitations persist in scalability, time drift, and model generalization, 

particularly in sparsely faulted domains and multi-tenant contexts. Future directions will focus on adaptive 

fault modeling, decentralized reasoning topologies, and robust trust boundary enforcement to ensure sustained 

reliability in evolving infrastructure landscapes. 
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