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ABSTRACT

Integral transform is one of the techniques in the function transformation methods. Integral
transforms have been interesting tools for solving different problems arising in applied mathematics,
mathematical physics and engineering science for at least two centuries. We have studied an extended
fractional Mellin transform in the generalized sense. For this testing space E and its dual space E* are
considered. We have investigated inversion formula by using inversion of classical Mellin transform and
prove Parseval’s Identity for an extended fractional Mellin transform. Also discussed some results of this
transform.
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INTRODUCTION:

Integral transform is one of the techniques in the function transformation methods. Integral
transforms have been interesting tools for solving different problems arising in applied mathematics,
mathematical physics and engineering science for at least two centuries.

Fractional Mellin transform is a generalization of the ordinary Mellin transform. The basic
theoretical properties of Mellin-type fractional integrals, known as generalizations of the Hadamard-type
fractional integrals [5]. Fractional Mellin transform becomes used in visual navigation since it can control
the range of rotation and scaling. Fractional Mellin analysis was developed in which the so-called
Hadamard- type integrals, which represent the appropriate extensions of the classical Riemann-Liouville and
Weyl fractional integrals [5]. Fractional Mellin transform used mainly in image encryption.

In this paper we have discussed on inversion formula by using inversion of classical Mellin
transform and prove Parseval’s Identity for an extended fractional Mellin transform.

Fractional Mellin Transform

A classical theory of the Mellin transform is extended to a generalized function space which is a
dual of testing function space developed by A. H. Zemanian [74].
One dimensional fractional Mellin transform , with parameter 6 of f(u) is defined as,

(o]

FRMT[f(u)] = Fg(r) = j f(uw)Kg(u, r)duy,

—00
2mir

where the kemel K (u, r) = using "efans®™ 6™ 0 <@ <.
It has many applications in areas of image encryption, Spectrum analysis etc. [81, 58].

1.1 The testing function space E(R")
An infinitely differentiable complex valued function @ on R" belongs to E(R") if for each compact
setlcS,,
where,
Sa={wu€eR" |ul <aa>0}
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Ve, () = SuII)IDum B(w)| < oo
ue
“Thus, E(R™) will denote the space of all @ € E(R™) with support contained in S,. Moreover, we say

that f is an extended fractional Mellin transformable, if it is member of E*, the dual space of E.

1.2 Theorem
To prove foreachr e R"and 0 < 6 < g the function Kg(u, r) is belongs to E(R™) as function of u,

1-icota u—ircosece—l

where Kg(u, 1) = -

1.3 Definitions
1.3.1 Definition of generalized fractional Fourier transform (FRFT)

The distributional fractional Fourier transform of f(x) € E*(R"),0<6 < g is defined by,

FRFT{f(x)} = Fo(p) = (f(x), Ko(x, p)),

where KQ(X, p) — % Zsm(x[(x +p2)COSG Z(Xp)]

where right hand side is meaningful i.e. , Kg(x,p) € Eand f € E*.

1.3.2 Definition of generalized fractional Mellin transform (FRMT)

A classical theory of the Mellin transform is extended to a generalized function space which is a
dual of testing function space developed by A. H. Zemanian [74].
The distributional fractional Mellin transform of f(u) € E*(R") ,0 < a < g is defined by,
FRMT{f(w)} = Fo(r) = (f(w), Ko (u, 1)),
One dimensional fractional Mellin transform , with parameter 6 of f(u) is defined as,

oo

FRMT[f(u)] = Fu(r) = J f(W) Ky (u, r)duy,

—00
2Tir

2mir_ . m oo 2
where the kernelK,, (u,r) = usine ‘etana” T108"W 0 < g < T,
a 2

It has many applications in areas of image encryption, Spectrum analysis etc. [81, 58].
where right hand side is meaningful i.e. , K,(u,r) € Eand f € E*.

1.3.3 Definition of generalized an extended fractional Mellin transform
An extended fractional Mellin transform of order a [3] is defined as

— icota
M (r) = EFRMT[f(w)] = / f F(W)K (0, r)du
’1 — icota
Jf(u)u—lrcoseca 1du, where K, (u,r) = u —ircoseca—1

M, (r) = EFRMT[f(u)] Af f(u)u~ireoseca=1qy where A = /—1 j;)ta
where right hand side is meaningful i.e. , K,(u,r) € Eand f € E*.

1.4 Properties of an extended fractional Mellin transform
If Mg, (r) = EFRMTI[f; (W)](r) Mg, (r) = EFRMT[f,(w)](r)

S.N. | Property Formula
1 Linearity Property EFRMT[A,f; (u) + A,f, ()] (r) = A;EFRMT[f, (w)](r) +
A,EFRMTIf, (w)](r)

2 Differential Property EFRMT([f ()] (r) = _r( + ﬂ) EFRMT (% f(u)) (1)
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EFRMT[f(au)](r) = aus™EFRMT[f(u)](r)

4 Modulation Property- | EFRMT[f(u)cosau](r)
! = %{EFRMT[eia“f(u)](r) + EFRMT[e™a4f(w)](r)}

5 Modulation Property- | EFRMT[f(u)sinau](r)
' = %{EFRMT[eia“f(u)](r) — EFRMT[e™"2%f(w)] (1)}

2. Aninversion formula for an extended fractional Mellin transform
If an extended fractional Mellin transform of order « [3] is defined as

1 — icota
Ma(r) = EFRMT[f(u)](r) = jif f(u)Ko((u r)du
1 —icota _ |
= \/;f f(u)u—lrcosew(—ldu, where Ka(u‘ I‘) — u—erOSeca_l
0

then by an inversion it is possible to recover f(u) by means of the inversion formula

1 -
f) =5 f My (PR, (u, ) dr

ir
usina

where, K, (u,r) =
Proof: We have

1 —icota r
Malr) = BERMITHWT = | =50 — j f(u)Kq (u, r)du
0
1 — icota . |
= \/;f f(u)u—lrcoseca—ldU, where Ka(u, r) — yircoseca—1
0

21 sina

M (r) = {M[f)]}E) = G(&) @
wheref_,—” =>r=iésina, df—sma dr
Mg (i€ sma) = {M[fI1}E) (2)

G(§) = My (i€ sina) = {M[f (W1}()
The right hand side is Fractional Mellin transform of f(u) with argument &. Invoking fractional Mellin
inversion we can write,

f(u) = i J, G(Rudg 3)
Now putting value of f(u)
Putting the value of G(E), ¢ dE.

V1 —icota —i
f(u) = Wf M, (ié sma)u [sina (sina) dr
0
o = Vi-icot ir/
f(u) = fo M, (r)Ky(u, r)dr where, K (u,r1) = 1(211)3% u' /sina

3. Parseval’s Identity
i) M, (r) = EFRMT[f(u)](r) and G,(r) = EFRMT[g(u)](r) then f0°° f(w)g(u)du =

1+icota f G (T) F {uf(u)}dr

(271)3/251110(

Proof:

IJFMR ICMRS’23-205



https://www.ijfmr.com/

ﬂ International Journal for Multidisciplinary Research @;

International Conference on Multidisciplinary Research & Studies 2023 i\
IJFMR E-ISSN: 2582-2160 e Website: www.iffmr.com e Email: editor@ijfmr.com ICMRS

M,,(r) = EFRMT[f(u)](r) = / — lcota f f(u)u-ircoseea—1 gy,

By using inversion formula for an extended fractlonal Mellin transform

V1 —icota
g(u) = m-f G (r)u Smadr
Taking complex conjugate of the above term
—v1 + icota r —ir)
9w = i(2n)3/25ina,f Gg(rju ~sinedr
0
Consider [” f(u)g(u)du

r 1+ icota r —i
=ff(u)du{(2 )3/2sina fG (r)u lr/Si”“dl‘}
0 0
_ iv1l + icota
(2m)3/2sina
_ iv1 + icota

(2m)3/2sina

iv1 + icota

- (2m)3/2sina

G, (1) dr} uu~tusinaf(u)dut

1

G (r)dr{| uu~ u_ir/sinaf(u)du

G,(r)dr

uu” ircoseca—1 f(u) du}

iv1 + icota
= 2 Zsina Go (1) Fp{uf(w)}dr
Jy” fWedu = 278 [ Go(r) Fyluf W)dr (@)
i) To prove
5 @ 5 iv1 +icota
flf(u)l =Af0 |F, (r)|* dr where A = @) 2sina

0

Proof: let f(u) = g(w)
Fa(r) = Gg (1)
m = Gg (1)

By using equation (4)

[t = [ it du =
0 0

oo

iv1 + icota F Fd
@) 2sina f a(M)Fq(r)dr
0
@ iv1 + icota

=A F, 2d h A= ———

fo eI dr where (2m)3/2sina
Conclusion:

In this paper we have discussed the generalized form of an extended fractional Mellin transform. We

have investigated inversion formula and prove Parseval’s Identity for an extended fractional Mellin
transform.
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